Чтение онлайн

на главную - закладки

Жанры

Возвращение времени. От античной космогонии к космологии будущего
Шрифт:

Если бы границы находились на конечном расстоянии от нас, вы могли бы представить, что вне видимой Вселенной есть еще пространство. Информация о границе может быть передана через то, что поступает из мира за пределами этой границы [177] .

Бесконечно удаленная граница не позволяет представить мир за ней. Мы просто должны указать, какая информация приходит, а какая исходит от нас, но выбор произволен. Не может быть дальнейших объяснений. Следовательно, ничто не может быть объяснено в рамках любой модели Вселенной с бесконечно удаленными границами. Принцип замкнутости объяснений нарушается, и с ним нарушается принцип достаточного основания.

177

В ОТО мы часто используем пространство с бесконечно удаленными границами в качестве

удобной модели замкнутой системы. Рассмотрим галактики. Это небольшая часть Вселенной, но мы могли бы построить ее модель как замкнутой системы. Например, мы хотим моделировать взаимодействие черной дыры в центре со звездами в галактическом диске. Для этого мы ограничим объем галактики и найдем решение уравнений ОТО, содержащее только то, что находится внутри этих границ. Но существуют некоторые технические трудности, связанные с описанием границ конечных размеров. Поэтому для удобства мы идеализируем ситуацию и раздвигаем эти границы до бесконечности. Это упрощает описание. Ничто не может войти или выйти через эти бесконечно удаленные границы, за исключением гравитационных волн и света, который мы можем использовать для наблюдения за поведением галактики. Такое использование бесконечного пространства оправданно. Тот факт, что информация должна быть указана вблизи бесконечной границы, напоминает о том, что мы имеем дело с идеализацией, в которой мы вырезали часть Вселенной и описали ее так, как если бы галактика – это все, что есть во Вселенной. Бессмысленно так моделировать всю Вселенную, однако приходится это делать, если мы принимаем ОТО в качестве космологической теории и допускаем, что Вселенная пространственно бесконечна.

Здесь есть технические тонкости. Но этот аргумент решающий, хотя его, насколько я могу судить, и игнорируют космологи, считающие, что Вселенная пространственно бесконечна. Я не вижу иного выхода кроме этого: любая модель Вселенной должна быть пространственно замкнутой и без границ. Нет ничего бесконечно далекого, как нет и бесконечного пространства.

Теперь поговорим о бесконечности времени.

Литература по космологии полна дум о будущем. Если Вселенная похожа скорее на модель Лейбница, чем Больцмана, то, может быть, время ее существования конечно? Возможно, в долгосрочной перспективе умрем не только мы, но и Вселенная? Предположение о том, что она конечна в пространстве, избавляет нас от парадоксов, присущих Вселенной Больцмана. Однако не от всех. Пространственно конечная и закрытая Вселенная может жить бесконечно долго, и если она не сожмется, то будет расширяться вечно. Есть бесконечно много времени для достижения теплового равновесия. Если так, не важно, сколько времени это займет. Все равно останется время для появления флуктуаций и создания невероятных структур. Таким образом, мы можем утверждать, что все, что может произойти, произойдет бесконечное число раз. Это снова приводит к парадоксу больцмановского мозга. Если должны выполняться принципы достаточного основания и тождества неразличимых, Вселенная должна избежать такого парадоксального конца.

В научной литературе предпринимались попытки рассуждений о далеком будущем Вселенной. Но чтобы рассуждать о далеком будущем, вы должны сделать некоторые существенные предположения. Одно из них – что законы природы не должны изменяться, поскольку если бы они менялись, мы оказались бы неспособны предсказать что-либо. И неоткрытых явлений, которые могут изменить ход истории Вселенной, не должно быть. Например, могут существовать силы настолько слабые, что мы до сих пор их не обнаружили, но, тем не менее, они вступают в игру на больших расстояниях и больших временных интервалах, превышающих нынешний возраст Вселенной. Это возможно. Но такой сценарий сводит на нет любое предсказание, сделанное исходя из имеющихся знаний. Не должно быть сюрпризов вроде космических “пузырей”, идущих на нас со скоростью света из-за горизонта.

Итак, мы можем надежно вывести следующее.

Галактики перестанут порождать звезды. Галактики – гигантские машины для превращения водорода в звезды. И не очень эффективные: типичная спиральная галактика ежегодно производит лишь около одной звезды. Сейчас Вселенная (возраст – почти 14 миллиардов лет) в основном состоит из изначального водорода и гелия. Несмотря на то, что водорода много, из него выйдет конечное число звезд. Даже если весь водород превратится в звезды, всегда будет последняя звезда. И это верхний предел. Скорее всего, неравновесные процессы, участвующие в звездообразовании, прекратятся задолго до того, как закончится водород.

Последние звезды выгорят. У звезд ограниченный срок жизни. Массивные звезды живут несколько миллионов лет и умирают, превращаясь в сверхновые. Большинство звезд живут миллиарды

лет и заканчивают как белые карлики. Наступит время, когда погаснет последняя звезда. И что тогда?

Вселенная будет заполнена материей и темной материей, излучением и темной энергией. Что произойдет во Вселенной в долгосрочной перспективе, во многом зависит от темной энергии, о котором мы знаем меньше всего. Она ассоциируется с пустым пространством. По последним данным, она составляет около 73 % всей массы-энергии Вселенной. Ее природа пока не известна, однако мы наблюдаем ее влияние на движение далеких галактик. В частности, темная энергия нужна для объяснения недавно обнаруженного ускорения всеобщего расширения. Кроме этого, мы ничего не знаем о темной энергии. Она может быть просто космологической постоянной или экзотической формой энергии с постоянной плотностью. Хотя плотность темной энергии находится примерно на одном уровне, мы не знаем, действительно ли это так – или же она меняется медленнее, чем мы регистрируем.

Варианты будущего Вселенной сильно различаются в зависимости от плотности темной энергии. Рассмотрим сначала сценарий, в котором плотность темной энергии сохраняется по мере расширения Вселенной. Если плотность постоянна, то она ведет себя как космологическая постоянная Эйнштейна. Она не уменьшается, несмотря на то, что Вселенная продолжает расширяться. Плотность остального – вся материя и все излучение – уменьшается, поскольку Вселенная расширяется и плотность энергии этих источников неуклонно снижается. Спустя несколько десятков миллиардов лет все станет незначительным, кроме плотности энергии, связанной с космологической постоянной.

Скопления галактик вследствие экспоненциального расширения расформируются настолько быстро, что вскоре они смогут видеть друг друга. Фотоны, оставив одно скопление и распространяясь со скоростью света, движутся недостаточно быстро для того, чтобы догнать другие скопления. Наблюдатели в каждом скоплении окружены горизонтом, скрывающем соседей. Каждое скопление превратится в замкнутую систему. Каждый горизонт как ящик, стенки которого отделяют подсистему от Вселенной. Поэтому методы физики “в ящике” применимы к такой подсистеме, и мы можем применять к ним методы термодинамики.

В этом месте проявляется новый эффект квантовой механики, за счет которого внутри каждого горизонта пространство заполнено газом фотонов в тепловом равновесии: своеобразный туман, образованный аналогично тому, как образуется излучение черной дыры Хокинга. Температура и плотность горизонта излучения экстремально низки, но остаются неизменными по мере расширения Вселенной. Между тем, все остальное, включая материю и реликтовое излучение, становится все менее плотным, и спустя достаточно большое время единственное, что будет наполнять Вселенную – это излучение горизонта. Вселенная должна навсегда прийти в равновесие. Будут, конечно, возникать флуктуации и их рецидивы, и время от времени то одна, то другая конфигурация Вселенной будет в точности повторяться (в том числе парадокс больцмановского мозга, который я описал в главе 16 как reductio ad absurdum ньютоновой парадигмы). Согласно этому сценарию, кажущаяся сложность нашей Вселенной – лишь короткая вспышка перед переходом к вечному равновесию.

Мы почти с уверенностью можем сказать, что мы не больцмановские мозги, поскольку тогда, наверное, мы не видели бы большую упорядоченную Вселенную. Это означает, что сценарий будущего Вселенной не соответствует действительности. Принцип достаточного основания, действуя через принцип тождества неразличимых, также его отвергает.

Самый простой способ избежать смерти Вселенной – остановить ее расширение. Это возможно, если плотность материи достаточна, чтобы вызвать сжатие. Материя гравитационно притягивает материю, и это замедляет расширение, так что если есть достаточно много материи, Вселенная сожмется до сингулярности. Или, возможно, квантовые эффекты остановят коллапс, превратив сжатие в расширение, и приведут к возникновению новой Вселенной. Но, вероятно, материи для замедления расширения окажется мало.

Следующий простейший способ избежать “тепловой смерти” реализуется в сценарии, в котором космологическая константа не является постоянной. В то время как имеются доказательства того, что темная энергия (которая для наших целей отождествляется с космологической постоянной) не менялась за время жизни нашей Вселенной, нет доказательств того, что она не будет меняться в долгосрочной перспективе. Это изменение может быть следствием более глубоких законов, которые действуют настолько медленно, что их следствия видны лишь на длительных временных масштабах, или изменение может быть просто следствием общей тенденции изменения самих законов. Действительно, принцип взаимного воздействия гласит, что космологическая константа должна находиться под влиянием Вселенной, на которую она сама решительно влияет.

Поделиться:
Популярные книги

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Имя нам Легион. Том 1

Дорничев Дмитрий
1. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 1

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Эра Мангуста. Том 9

Третьяков Андрей
9. Рос: Мангуст
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эра Мангуста. Том 9

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Наследник 2

Шимохин Дмитрий
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
5.75
рейтинг книги
Наследник 2

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Скрываясь в тени

Мазуров Дмитрий
2. Теневой путь
Фантастика:
боевая фантастика
7.84
рейтинг книги
Скрываясь в тени

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6