Чтение онлайн

на главную - закладки

Жанры

Время вспять, или Физик, физик, где ты был
Шрифт:

Эта гипотеза никогда не была доказана теоретически, и в 1957 году я посвятил свои усилия ее экспериментальному доказательству. Я придумал для этого опыт, который и осуществил с помощью американского физика Уорена Проктора (Warren Proctor), бывшего ученика Блоха, работавшего у меня два года. (Да, на этот раз я решил «испачкать ручки», ведь я сам был инженером-радиотехником из Сюпелека.) Принцип эксперимента следующий.

Эксперимент А. Ядерные спины образца (кристалла) приводят в состояние теплового равновесия с решеткой при температуре 300 К в сильном магнитном поле, где они приобретают намагниченность, измеряемую с помощью ЯМР. Затем образец размагничивают до нулевого поля за время, короткое по сравнению с T1, но длинное по сравнению с Т2. Можно предположить, что спины находятся все время в состоянии внутреннего равновесия, но изолированы от решетки. Если снова поднять поле до начального значения, можно наблюдать возвращение ядерной

намагниченности к начальному значению (если учесть малые потери). Это совместимо с гипотезой спиновой температуры, но не является доказательством этой гипотезы. В частности, техникой ЯМР ничего нельзя узнать о состоянии спинов в нулевом поле. Если предположить, что систему спинов можно в каждый момент времени описать спиновой температурой, ее значение в нулевом поле легко подсчитать, записав условие сохранения энтропии спинов во время адиабатического размагничивания. Предположим для наглядности, что эта подсчитанная температура равняется 2 K (такова она была в нашем эксперименте).

Эксперимент В. Образец охлаждают в нулевом поле в криостате с температурой 2 K в течение времени, гораздо большего, чем Т1. В этом случае мы знаем, что спины находятся в состоянии равновесия при настоящей термодинамической температуре 2 K. Затем адиабатически поднимают магнитное поле до того же значения, что в начале эксперимента А, и измеряют с помощью ЯМР ядерную намагниченность. Если она равна той, что наблюдалась в эксперименте А, правильность гипотезы спиновой температуры доказана. Так оно и оказалось. Этот опыт изменил отношение многих физиков к понятию спиновой температуры, введенному впервые в электронный магнетизм двумя голландскими физиками Казимиром и дю Пре (du Pre), и в ядерный — Паундом и Парселлом.

Думаю, именно этот опыт положил конец враждебному отношению Блоха к понятию спиновой температуры. Что касается Парселла, который еще со времени своих первых экспериментов с Паундом был убежден в его правильности, про наш опыт с Проктором он сказал: «Дитя родилось давно, а сегодня вы принесли брачное свидетельство».

Спиновые системы имеют интересную особенность: спектр их энергии ограничен сверху (в отличие, например, от систем с кинетической энергией). Это дает возможность создать эти системы в состоянии отрицательной температуры. При отрицательной температуре вероятность найти систему на данном уровне энергии тем больше, чем выше энергия этого уровня. Очевидно, что состояние с отрицательной температурой бессмысленно для «нормальной» системы, т. е. такой, энергетический спектр которой не имеет верхней границы. Энергия такой системы в подобном состоянии была бы бесконечна.

Наоборот, для спиновых систем такие состояния не только мыслимы, но и создавались, и подробно изучались. Важно понять, что система с отрицательной температурой «горячее» любой системы с положительной температурой; если ее поместить в тепловой контакт с «нормальной» системой (которая может иметь только положительную температуру), она будет необратимо передавать энергию «нормальной» системе и достигнет состояния с бесконечной температурой, где все ее уровни одинаково населены, т. е. состояния максимального беспорядка. Только после неизбежного перехода через полный хаос сможет она достигнуть положительной температуры и прийти в тепловое равновесие с «нормальной» системой. Ниже, в главе «Запад и Восток», будет рассказано о неожиданном применении понятия отрицательных температур.

*Динамическая ядерная поляризация в твердых телах

Перехожу к третьему явлению, обнаруженному в эти годы в нашей лаборатории, а именно к динамической ядерной поляризации (или ДЯП) в твердых телах. Ее разные проявления и приложения занимали нас почти четверть века.

В своей работе Оверхаузер очень настаивал на том, что электроны проводимости в металлах, насыщение резонанса которых приводило к громадному увеличению ядерной поляризации, подчинялись так называемой статистике Ферми, подробности которой я здесь опущу. В моей женевской работе я показал, что эта предпосылка была излишней, и предсказал возможность ДЯП в жидкостях, впоследствии доказанной в нашей лаборатории (о чем рассказано выше). Хорошо известно, что спины парамагнитных примесей, растворенных в жидкостях, где они играют роль спинов электронов проводимости, статистике Ферми не подчиняются. Не я один настаивал на необязательности статистики Ферми для эффекта Оверхаузера; Блох это тоже заметил и сделал заключение, что эффект Оверхаузера должен быть наблюдаем и в твердых диэлектриках. Но это заключение было в общем ошибочным, как я показал в своей женевской работе. Тщательный анализ роли электронных спинов в ядерной релаксации позволил обнаружить малозаметное, но существенное различие ее механизма в металлах и жидкостях, с одной стороны, и твердыми диэлектриками — с другой. Неверующий читатель может на свой страх и риск, обратиться к книге «Ядерный магнетизм» за доказательством. Но, если ДЯП с помощью эффекта Оверхаузера или его «унтерхау-зерского» варианта была невозможна в твердых диэлектриках, есть ли другой метод?

То, к чему я стремился (да и не только я), не было увеличением во много раз очень малых поляризаций, переходя, скажем, от одной миллиардной доли к нескольким миллионным, как в магнитометре для земного поля, или от нескольких миллионных долей к одной тысячной, как было с жидкостями в сильных полях. Целью была высокая абсолютная поляризация, близкая к стопроцентной, для ряда применений, которые я опишу позже.

Но при динамических увеличениях порядка нескольких сотен в лучшем случае (поле земли было специальным исключением) начинать приходилось с «естественной» ядерной поляризации в несколько тысячных, т. е. с температуры порядка 1 K. Для металлов можно было бы подумать об использовании обычного эффекта

Оверхаузера, если бы при низких температурах так называемый скин-эффект не препятствовал проникновению в глубь металла насыщающего микроволнового поля. Что же касается жидкостей, то при температурах порядка 1 R они… не жидкости. Единственным исключением является изотоп гелия 3He (4Не не имеет ядерного спина). Между 1955 и 1960 годами у нас в лаборатории его не было, но позже мы, как и другие, безуспешно пытались поляризовать его с помощью эффекта Оверхаузера. Причины неудачи не поняты до сих пор.

Решение задачи ДЯП в твердых диэлектриках пришло мне в голову в один прекрасный день. Попробую его изложить в бессовестно упрощенном, но, в принципе, правильном виде.

Рассмотрим образец твердого диэлектрика, содержащий ядерные спины I в нормальной пропорции и малую примесь электронных спинов S, скажем, один S на несколько тысяч I. Положим для магнитного поля и для температуры условия, скажем, 2,5 Тесла и 1 K, при которых электронные спины поляризованы почти на 100 % и все «смотрят вверх», а ядерные спины имеют почти нулевую поляризацию, при которой столько же из них смотрят «вверх», сколько и «вниз».

Предположим еще, что время спин-решеточной релаксации спинов S очень коротко, так что если по какой-нибудь причине спин S флипнет «вниз», релаксация моментально вернет его в равновесие, т. е. «вверх». Все эти гипотезы вполне реалистичны. Наша задача заключается в том, чтобы перевести все спины I из состояния «вниз» в состояние «вверх».

Возьмем ядерный спин I, который направлен «вниз». Он мог бы перейти в «вверх», флип-флопнув с электронным спином, направленным «вверх». Но для этого нужна энергия  = (SI), которую в жидкости можно почерпнуть из кинетической энергии относительного движения этих спинов, но которая совершенно отсутствует в твердом образце при низкой температуре. Этот флип-флоп можно все-таки произвести, взяв эту энергию у внешнего микроволнового источника с нижней частотой . (В первом приближении для внешнего источника такой переход запрещен, но не во втором.) Но спин S, который в результате такого флип-флопа перешел в состояние «вниз», сразу возвращается в «вверх» благодаря своей сверхскорой релаксации, и спин I, который перешел «вверх», «видит» вокруг себя только спины 5, которые тоже «вверх», и не может флип-флопнуть с ними. Он мог бы флип-флипнуть с любым из них, но для этого нужна энергия + = (S + I), которой в образце нет и спин I остается пойманным «вверх». Таким образом, все спины I переводятся в состояние «вверх» один за другим.

Предположение стопроцентной электронной поляризации, сделанное, чтобы облегчить изложение, совсем не нужно; можно показать, что при любой электронной поляризации изложенный метод, т. е. облучение образца микроволновым источником с частотой = (SI), уравнивает ядерную поляризацию с электронной. Легко также показать, что облучение флип-флиповой частотой + = (S + I) приводит к ядерной поляризации той же величины, но с обратным знаком. Необходимо отметить важность быстрой электронной релаксации. Каждый из спинов 5 «обслуживает» тысячи спинов I. Не успел он флип-флопнуть с одним спином I, как он же должен поскорее вернуться в состояние «вверх», чтобы заняться другим. Эта быстрая релаксация требует качеств, напоминающих те, которыми по легенде располагал царь Соломон, что побудило меня назвать этот метод ядерной поляризации «методом царя Соломона». (По просьбе Дебьеса я однажды прочел лекцию об этом методе группе школьных учителей и учительниц. Объясняя происхождение названия «метод царя Соломона», я вдруг заметил в первых рядах трех монахинь, учительниц из католических школ, которые прилежно записывали все, что я говорил.)

В публикациях я предпочитал название «солид-эффект», чтобы подчеркнуть отсутствие относительного движения электронных и ядерных спинов для контраста с жидкостями и металлами. В 1958 году я решил проверить эту идею экспериментом. Чтобы выиграть время, я поручил роль электронного спина 5 ядерному спину с ларморовской частотой, в несколько раз большей, чем у ядерного спина I. Я выбрал кристалл фтористого лития LiF, где роль спина 5 играл спин 19F, а спином I был 6Li, с ларморовской частотой, в шесть раз меньшей. Работая снова с Проктором, в двадцать четыре часа мы проделали успешно опыт и доказали, что «солид-эффект» существует. Несколько позже с Комбриссоном и еще с одним молодым сотрудником мы повторили опыт, но на этот раз с настоящим электронным спином S. Эра ДЯП началась. Интересно заметить, что, перечитывая свою женевскую работу несколько лет спустя, я открыл, что, если читать между строками, принцип «солид-эффекта» был там ясно указан, но в течение трех лет никто, включая меня, этого не заметил. Мне повезло, что я оказался первым.*

Поделиться:
Популярные книги

Поющие в терновнике

Маккалоу Колин
Любовные романы:
современные любовные романы
9.56
рейтинг книги
Поющие в терновнике

Жена воина, или любовь на выживание

Звездная Елена
3. Право сильнейшего
Фантастика:
фэнтези
8.98
рейтинг книги
Жена воина, или любовь на выживание

Имперский Курьер. Том 2

Бо Вова
2. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 2

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Черный дембель. Часть 1

Федин Андрей Анатольевич
1. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 1

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Хозяин Теней 4

Петров Максим Николаевич
4. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 4

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм