Всё об искусственном интеллекте за 60 минут
Шрифт:
Грей Уолтер стал пионером в разработке роботов с собственным разумом. (Он также стоял у истоков такой технологии, как электроэнцефалография, или ЭЭГ, применяющейся для изучения человеческого мозга.) Его механические черепашки могли реагировать на изменения окружающей среды, двигаться к свету и обходить различные препятствия. Они даже находили дорогу к зарядной станции, когда заряд их батарей оказывался на исходе. Уолтер утверждал, что эти простые роботы обладают эквивалентом двух нейронов и, если добавить к ним больше «клеток», можно добиться более сложного поведения. Ученый попробовал достичь этого, создав усовершенствованную версию робота-черепахи, которую назвал Корой. Он обучил Кору реагировать на полицейский свисток, подчиняясь условному рефлексу, –
К 1950 году Тьюринг уже внес огромный вклад в зарождавшуюся тогда область компьютерных технологий. В его ранних работах представлено фундаментальное математическое доказательство того, что ни один компьютер не в силах предсказать, сможет ли он прекратить вычисления для какой-либо конкретной программы, или, другими словами, что некоторые проблемы не поддаются вычислению. Тьюринг участвовал в разработке самых первых программируемых компьютеров, а его секретная работа в Блетчли-парке [1] помогла декодировать зашифрованные сообщения во время Второй мировой войны.
1
Особняк, расположенный в городе Милтон-Кинс. Здесь в годы Второй мировой войны находилось главное шифровальное подразделение Великобритании – Правительственная школа кодов и шифров. – Здесь и далее примеч. переводчика.
Как и многие пионеры компьютерных технологий, Тьюринг интересовался интеллектом. Что это? Как можно создать его искусственный аналог? И если кому-то удастся сконструировать компьютер, который будет думать так же, как живые существа, как его создатель узнает об этом? Тьюринг решил, что необходим метод оценки способности машины думать. Он назвал его «Игра в имитацию», но более известен этот метод как тест Тьюринга.
Тест Тьюринга стал важным критерием для ИИ, но также вызвал и много критики. Хотя он способен дать некоторое представление о возможности ИИ вдумчиво отвечать на письменные запросы, он не позволяет оценить другие его способности, такие как прогнозирование и оптимизация или управление роботом и распознавание изображений.
Почти все пионеры компьютерной эры задумывались об ИИ, Тьюринг не был единственным. В США Джон фон Нейман, математический гений, который в 1945 году описал, как сконструировать первые программируемые компьютеры, работал с Тьюрингом над интеллектуальными компьютерами. Последний проект фон Неймана был посвящен самовоспроизводящимся машинам, которые, как он надеялся, смогут выполнять большинство функций человеческого мозга и воспроизводить самих себя. К сожалению, в 1953 году фон Нейман умер от рака, не успев завершить этот проект.
Опросчик может взаимодействовать с двумя собеседниками – каждый из них в отдельной комнате – и задавать им любые вопросы, печатая их: «Пожалуйста, напишите стихотворение о мосте через Форт» или «Что получится, если к 34 957 прибавить 70 764?» Затем опрашиваемые вводят свои ответы. Через некоторое время опросчику сообщают, что один из его собеседников на самом деле компьютер. Если компьютер не удается отличить от реального человека, значит, компьютер прошел тест.
Еще один гений, Клод Шеннон, создавший теорию информации и криптографии, придумавший термин «бит» для обозначения минимальной единицы измерения количества информации в двоичной системе счисления, тоже был глубоко вовлечен в процесс развития ИИ на его самых ранних стадиях. Шеннон сконструировал роботизированную мышь, которую можно было научить находить выход из лабиринта, и написал компьютерную программу, игравшую в шахматы. В последние годы своей жизни он создал и другие удивительные вещи, например робота, который мог жонглировать мячиками. В 1955 году Шеннон вместе с Джоном Маккарти, Марвином Мински и Натаниэлем Рочестером предложил
ДЖОН МАККАРТИ, МАРВИН Л. МИНСКИ, НАТАНИЭЛЬ РОЧЕСТЕР И КЛОД Э. ШЕННОН
Мы предлагаем провести двухмесячное исследование искусственного интеллекта, рассчитанное на десять человек, летом 1956 года в Дартмутском колледже в Гановере, штат Нью-Гэмпшир. Исследование должно основываться на предположении о том, что каждый аспект обучения или любые другие свойства интеллекта могут быть описаны настолько точно, что удастся сконструировать машину для его моделирования. Будет предпринята попытка выяснить, как заставить такую машину использовать язык, выделять главные признаки и создавать концепции, решать различные типы задач, свойственных пока только человеку, и самосовершенствоваться. Мы считаем, что можно добиться значительного прогресса в достижении одной или нескольких из этих целей, если тщательно отобранная группа ученых поработает над этим вместе в течение лета.
Взлеты и падения ИИ
Оживление, вызванное ИИ, быстро росло после проведения Дартмутской конференции. Новые идеи, касающиеся логических функций, процесса принятия решений, планируемого поведения и даже моделирования нейронов, наполняли исследователей оптимизмом. Некоторые из них полагали, что проблема машинного перевода будет решена очень скоро благодаря достижениям в таких областях, как теория информации, например, и формулированию правил, описывающих, как слова объединяются в предложения в естественных языках. Другие исследователи концентрировались на изучении того, как работают нейроны, каким образом мозг использует нейронные сети, чтобы обучаться и делать прогнозы. Уолтер Питтс и Уоррен Мак-Каллок разработали одну из первых искусственных нейронных сетей; Марвин Мински сконструировал искусственную нейронную сеть SNARC. (см. главу 5). Однако к началу 1960-х годов даже очень опытные и умные исследователи делали слегка нереалистичные прогнозы, учитывая состояние технологий на тот момент.
Теоретически это возможно – построить мозг, который смог бы воспроизводить сам себя на конвейере и осознавать свое собственное существование.
Благодаря такому воодушевлению росло также финансирование, и исследователи лихорадочно работали над проектами машинного перевода и искусственных нейронных сетей. И все же ажиотаж оказался слишком велик. К 1964 году спонсоры в США (Национальный исследовательский совет) начали беспокоиться из-за отсутствия прогресса в области машинного перевода. Консультативный комитет по автоматической обработке текстовой информации изучил проблему. Казалось, исследователи недооценили многозначность слов – тот факт, что их значение зависит от контекста. В результате в 1960-х годах ИИ допускал весьма досадные ошибки. Так, при переводе с английского на русский и обратно «с глаз долой – из сердца вон» превратилось в «слепой идиот».
Уже на нашем веку машины могут превзойти нас по общему уровню интеллектуального развития.
В отчете Консультативный комитет заключил, что машинный перевод хуже человеческого и к тому же значительно дороже. После публикации этого отчета Национальный исследовательский совет, уже потратив к тому моменту 20 миллионов долларов, прекратил финансирование исследований в области машинного перевода в США. Что касается исследования нейросетей, они тоже постепенно сходили на нет, поскольку ученые отчаянно пытались заставить простые нейронные сети делать что-то полезное. Последней каплей стала книга Марвина Мински и Сеймура Пейперта «Перцептроны», опубликованная в 1969 году, в которой были описаны многие ограничения модели простого нейрона. Это положило конец исследованиям нейронных сетей.