Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
Шрифт:
• Определить частоту дискретизации (выборки) аналогового сигнала;
• Определить необходимое число двоичных разрядов в кодовом представлении измеряемой аналоговой величины;
• Преобразовать напряжение входного сигнала в многоразрядный двоичный код.
Далее мы рассмотрим каждую из перечисленных задач более подробно.
4.20.1. Частота дискретизации сигнала
В процессе преобразования непрерывно изменяющийся аналоговый сигнал представляется конечным числом отсчетов этого сигнала, взятых в определенные моменты времени (рис. 4.80). Такой способ преобразования называют дискретизацией по времени.
Как правило,
Минимальная частота дискретизации сигнала равна удвоенной частоте высшей гармоники в представлении исследуемого сигнала:
fS >= 2fh, где
fS — частота дискретизации, fh — частота высшей гармоники при разложении исследуемого сигнала в гармонический ряд.
Одновременно с американским ученым Найквистом аналогичный результат был получен русским ученым академиком В.А. Котельниковым, поэтому теорему о минимальном значении частоты дискретизации в России именуют теоремой Котельникова (прим. переводчика).
Частота дискретизации определяет максимальный интервал времени TS между соседними отсчетами (рис. 4.80):
TS = 1/fS
В соответствие с критерием Найквиста минимальная частота дискретизации чисто синусоидального сигнала должна быть в два раза выше частоты этого сигнала. Если исследуемый сигнал имеет более сложную форму, то следует провести гармонический анализ этого сигнала и определить частоты наивысшей значимой гармоники.
Пример. Верхняя граница частотного диапазона голоса человека примерно равна 4 кГц. Поэтому частота дискретизации в оборудовании телефонной компании должна составлять не менее 8 кГц.
На практике исследуемый сигнал перед оцифровкой должен быть преобразован фильтром низкой частоты, который устранит шумовую составляющую сигнала, а также нежелательные высокочастотные гармоники.
4.20.2. Представление аналоговой величины в цифровом коде
Полученные в процессе дискретизации по времени аналоговые отсчеты должны быть преобразованы в цифровой код. С технической точки зрения наиболее удобно преобразовывать в цифровой код сигналы в виде напряжения. Именно поэтому датчики различных физических величин по существу являются преобразователями типа ток-напряжение, температура–напряжение, давление–напряжение и т.д.
В процессе преобразования измеряемое напряжение соотносится с эталонным, которое называют опорным напряжением UREF. Опорное напряжение UREF формируется как разность потенциалов двух стабилизированных источников напряжения:источника с высоким уровнем UHL и источника с низким уровнем URL:
UREF = URH – URL
Величина
Рис. 4.81. Прямая идеальной точности для аналого-цифрового преобразования
Пример. Модуль АЦП в составе МК 68HC12 — 8-разрядный. Это означает, что любая величина входного аналогового напряжения преобразуется этим АЦП в 8-разрядный двоичный код без знака. Число различных уровней напряжения, с которыми в ходе аналого-цифрового преобразования сравнивается входное напряжение, составляет 28 = 256. МК B32 в составе семейства 68HC12 имеет дополнительный режим преобразования АЦП, в котором число разрядов цифрового кода равно 10. Измерение входного сигнала этим АЦП будет выполнено с большей точностью, поскольку его аппаратные средства образуют 210 = 1024 уровней сравнения напряжения.
4.20.3.Квантование по уровню и разрешающая способность
Преобразование величины напряжения аналогового отсчета в цифровой код называется дискретизацией или квантованием по уровню. Для получения цифрового кода, десятичный эквивалент которого прямопропорционален величине входного напряжения, АЦП сравнивает аналоговый сигнал с множеством эталонных аналоговых уровней, образованных его аппаратными средствами. Число этих уровней равно 2n. Однако для сравнения необходимо знать величину каждого из этих уровней. Ее можно вычислить, используя понятие разрешающей способности АЦП.
Для примера предположим, что к выводу высокого уровня опорного напряжения VHL подключен источник стабилизированного напряжения 5.0 В, а к выводу низкого уровня опорного напряжения VRL — источник напряжения 0 В. Если мы разделим разность этих напряжений на 256 уровней, то разность напряжений между любыми двумя соседними уровнями составит:
(5,0 – 0,0)/256 = 19,53 мВ
При этом величина напряжения первого уровня сравнения составит 0 В, десятого уровня — 175,78 мВ, 256-го уровня — 4,980 В. Если мы увеличим число промежуточных уровней сравнения напряжения, шаг между уровнями уменьшится, а разрешающая способность АЦП увеличится. В общем виде разрешающая способность АЦП равна: