Введение в электронику
Шрифт:
30-1. Вопросы
1. Дайте определение концепции частотных характеристик.
2. Как конструируются следующие колебания согласно концепции частотных характеристик?
а. Прямоугольные колебания
б. Пилообразные колебания.
3. Что такое периодическое колебание?
4. Что такое скважность?
5. Нарисуйте примеры положительного выброса, отрицательного выброса и «звона» в применении к реальному сигналу.
RC цепь может изменять форму сложных сигналов так, что выходная форма будет совсем не похожа
На рис. 30–11 изображена дифференцирующая цепь.
Рис. 30–11. Дифференцирующая цепь.
Напомним, что сложные сигналы состоят из основной частоты и большого числа гармоник. Когда сложный сигнал поступает на дифференцирующую цепь, она влияет на каждую частоту по разному. Отношение емкостного сопротивления (Хс) к R для каждой гармоники различно. Это приводит к тому, что каждая гармоника сдвигается по фазе и уменьшается по амплитуде в разной степени. В результате исходная форма сигнала искажается. На рис. 30–12 показано, что происходит с сигналом прямоугольной фор- мы, прошедшим дифференцирующую цепь. На рис. 30–13 показано влияние различных постоянных времени RC цепи.
Рис. 30–12. Преобразование сигнала прямоугольной формы на выходе дифференцирующей цепи.
Рис. 30–13. Влияние различных постоянных времени на форму выходного сигнала дифференцирующей цепи.
Интегрирующая цепь подобна дифференцирующей, за исключением того, что параллельно выходу включен конденсатор (рис. 30–14). На рис. 30–15 показано, как изменяется форма прямоугольного сигнала, прошедшего интегрирующую цепь. Интегрирующая цепь искажает сигнал не так, как дифференцирующая.
Рис. 30–14. Интегрирующая цепь.
Рис. 30–15. Преобразование сигнала прямоугольной формы на выходе интегрирующей цепи.
На рис. 30–16 показано влияние различных постоянных времени RC цепи.
Рис. 30–16. Влияние различных постоянных времени на форму выходного сигнала интегрирующей цепи.
Другим типом цепи, изменяющим форму
Рис. 30–17. Последовательный диодный ограничитель.
Рис. 30–18. Выходной сигнал при перемене полярности диода в цепи ограничителя.
Используя напряжение смещения можно регулировать величину обрезаемого сигнала. На рис. 30–19 изображен последовательный ограничитель со смещением. Диод не может проводить до тех пор, пока входной сигнал не превысит напряжение смещения.
Рис. 30–19. Последовательный диодный ограничитель со смещением.
На рис. 30–20 показан выходной сигнал, полученный в результате перемены полярности диода и напряжения смещения в последовательном ограничителе.
Рис. 30–20. Выходной сигнал при перемене полярности диода и источника смещения в смещенном последовательном диодном ограничителе.
Цепь параллельного ограничения выполняет те же функции, что и последовательный ограничитель (рис. 30–21). Разница состоит в том, что диод включен параллельно выходу. Эта цепь обрезает отрицательную часть входного сигнала.
Рис. 30–21. Параллельный диодный ограничитель.
На рис. 30–22 показано влияние перемены полярности диода. Параллельный ограничитель может быть смещен для изменения уровня ограничения сигнала, как показано на рис. 30–23 и рис. 30–24.
Рис. 30–22. Перемена полярности диода в параллельном диодном ограничителе.
Рис. 30–23. Параллельный диодный ограничитель со смещением.
Рис. 30–24. Перемена полярности диода и источника смещения в смещенном параллельном диодном ограничителе.