Высшие знания
Шрифт:
Группа протонов, взаимодействующая своими полями, стремится сблизиться. Их структура образована дырками узлов, а дырки стремятся к источнику положительного поля. Сближению препятствует барьер стоячей волны, который возникает при взаимодействии синхронизированных полей.
Напряженность полей нейтрона значительно ниже. Его можно представить как комету, газопылевое облако которой обволакивает ядро. Нейтрон тоже реагирует на поле протона и стремится с ним сблизиться. Но силы взаимодействия между протонами выше. Поэтому в группе нуклонов протоны находятся внутри группы, а нейтроны вытесняются на внешнюю оболочку. Число нейтронов на внешней оболочке не превышает числа протонов. Не разместившиеся на первой оболочке нейтроны
Объединение большого числа нуклонов приводит к тому, что система распадается на группы нуклонов, вращающиеся как вокруг локальной оси этой группы, так и вокруг центральной оси. Можно представить, что тяжелое ядро состоит из набора легких ядер.
Протоны и нейтроны постоянно обмениваются мюонами. Нейтрон, захвативший мюон протона в период его диссоциации, станет протоном. А протон, потерявший мюон, станет нейтроном. Возникший протон устремится к центру группы, а нейтрон будет выброшен на внешнюю оболочку.
Ядро атома можно представить как группу спрессованных комет, большая часть газопылевого облака которых была запрессована внутрь объема ядра атома и образовала находящуюся под высоким давлением вихревую среду, в которой размещаются ядра комет. Только по осевым линиям, разделяющим их поля, среда вырывается наружу.
Положительные поля протонов, не экранированные нейтроном, распространяются в окружающем пространстве в виде лучей. Каждый протон имеет один луч положительного поля. Его можно представить как канал, низший энергетический уровень, по которому газопылевая среда этой кометы выбрасывается в окружающее пространство, а затем возвращается в осевом направлении атома. Луч может быть экранирован нейтроном второй оболочки. Тогда он разделится на два ослабленных луча. Лучи протонов являются главным фактором, определяющим воздействие ядра атома на окружающее пространство.
Наличие нейтрино в областях осевых полей протонов и нейтронов изначально вносит элемент механического дисбаланса вращающихся масс. В результате этого возникает прецессия осей вращения протона, при которой наружный конец оси вращения описывает окружность с частотой прецессии, подобно оси волчка. При этом возникают волновые изменения длины волны, излучаемой полями частицы, волна прецессии.
1.7. Атом
Прецессирующее ядро атома можно представить в виде двух больших рабочих колес центробежного насоса, имеющих только по одной лопасти. Эти лопасти образованы групповой несимметрией синхронизированных малых рабочих колес насосов - нуклонов, которые вращаются навстречу друг другу и при этом связаны между собою упругими силами подобно пружине. Поэтому можно представить, что большие лопасти тоже вращаются навстречу друг другу и тоже связаны упругими силами. Тяжелое ядро атома имеет большие лопасти, в структуре которых можно выделить большие лопасти более низкого уровня, легкие ядра. Большие лопасти вращаются с частотой прецессии и создают на луче каждого протона волны прецессии. Волны прецессии верхней и нижней части луча протона находятся в противофазе, соответственно противофазе верхней и нижней частей протона.
Смещение Вакуума в волнах прецессии создает поток Вакуума, который является несущей средой для волн протонов. В отличие от волн М+ и М- протонов, которые являются волнами изменения фазы Вакуума, волна прецессии является волной плотности Вакуума. В волне прецессии плотность М+ и М- изменяется согласно, поэтому Вакуум движется с постоянным ускорением. В результате длина волны прецессии возрастает пропорционально расстоянию до атомного ядра. Длина волны протона в волне прецессии тоже увеличивается пропорционально длине волны прецессии. Волна протона как бы растягивается в пространстве по мере удаления от ядра.
Волны
Амплитуда волн прецессии в дисковом поле протона снижается в направлении разделительного поля, а волны прецессии по разные стороны разделительного дискового поля находятся в противофазе. Поэтому электрон в луче протона совершает вынужденные перемещения с частотой прецессии. В процессе этих кувырканий электрона при переходе из одного дискового поля в другое появляется своеобразная прецессия оси его вращения. При этом электрон излучает волны прецессии с частотой волн прецессии протона. Следствием взаимодействия волн прецессии протона и электрона является появление стоячих волн, которые вследствие различия амплитуды волн прецессии электрона и протона имеют два узла. Узлы стоячих волн образуют электронную оболочку и подоболочку атома. Число узлов и соответствующих им оболочек и подоболочек возрастает с увеличением числа электронов, участвующих в создании стоячих волн прецессии. Электроны располагаются во впадинах стоячих волн прецессии.
Отрицательное дисковое поле протона имеет магнитный момент, равный магнитному моменту положительного радиального поля электрона. Поэтому луч протона гасится электроном, за которым возникает область тени. В объеме электрона радиальное поле меняет направление и знак, преобразуясь в отрицательные осевые поля. Отрицательные осевые поля электрона замыкаются на положительные радиальные поля керна протона. Система протон-электрон обладает высокой стабильностью, энергетическим минимумом относительно внешней среды.
При большом числе протонов в атомном ядре количество электронов, располагающихся на одной оболочке, ограничено расстоянием сближения электронов. Это расстояние не может быть меньше порядка длины первой волны прецессии. Вследствие взаимодействия волн прецессии соседних электронов между ними также возникает стоячая волна. Каждый электрон, взаимодействуя с полями рассеяния соседних протонов, создает электронные подоболочки, в узлах которых может зафиксироваться соседний электрон в динамике своих перемещений. Если луч протона экранирован нейтроном, то он делится на два слабых луча, каждый из которых способен удержать электрон. В этом случае возникает система многоэлектронного атома.
Электрон может проникнуть на электронную оболочку извне, преодолев пучность стоячей волны. Это возможно при наличии достаточной кинетической энергии электрона, которая может быть сообщена ему, например, при столкновении с фотоном. Если электрон, находящийся на стационарной электронной оболочке, приобретет достаточную кинетическую энергию, он может преодолеть пучность стоячей волны и перейти на более удаленную электронную оболочку. Переход будет осуществлен со скоростью движения Вакуума в волне прецессии, которая может многократно превышать скорость света. Торможение электрона произойдет в объеме стоячей волны новой оболочки. При этом возникает ударная волна в виде сжатия М+ и М- узлами электрона. После торможения электрона ударная волна становится самостоятельной частицей, которая имеет характеристики индуцированного (вторичного) фотона. Энергия вторичного фотона равна разности энергий электрона на старой и новой оболочках.