Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Вооружившись этими идеями, давайте вернемся к вопросу о том, как начиналась Вселенная. Мы можем говорить о пространстве и времени раздельно (как мы уже и поступали в этом обсуждении), когда рассматриваем ситуации с низкими скоростями и слабой гравитацией. Вообще же время и пространство могут оказаться тесно переплетенными, и потому процессы их растягивания и сжатия тоже в какой-то степени смешиваются. Это смешивание играло важную роль в ранней Вселенной и является ключом к пониманию начала времени.

Искривление пространства-времени. Материя и энергия искривляют время, из-за чего временное измерение переплетается с пространственным.

Вопрос о начале времени отчасти напоминает вопрос о крае мира. Когда люди представляли себе мир плоским, они задумывались, не выльется ли море через край. Это было проверено на опыте, и оказалось, что можно обойти

мир вокруг и никуда не упасть. Вопрос о том, что же происходит на краю мира, решился, когда люди поняли, что мир представляет собой не плоскость, а искривленную поверхность. Время, однако, выглядело похожим на образцовый железнодорожный путь. Если бы у него было начало, то должен был бы иметься некто (то есть Бог), кто запустил бы движение поездов. Хотя общая теория относительности Эйнштейна объединила время и пространство в виде пространства-времени и включила в рассмотрение определенное смешивание пространства и времени, время по-прежнему отличается от пространства и либо имеет начало и конец, либо длится вечно. Однако как только мы добавляем эффекты квантовой теории к теории относительности, в предельных случаях искривление может оказаться столь существенным, что время поведет себя как другое пространственное измерение.

В ранней Вселенной — когда она была столь малой, что ею могли управлять как общая теория относительности, так и квантовая теория, — фактически имелось четыре измерения в пространстве и ни одного во времени. Это означает, что когда мы говорим о начале Вселенной, то касаемся тонкого вопроса: ведь когда мы смотрим назад, на самую раннюю Вселенную, то времени в нашем обычном понимании там не существовало! Мы должны признать, что наши привычные представления о пространстве и времени неприменимы к самой ранней Вселенной. Это за пределами нашего обычного понимания, но не за пределами нашего воображения или нашей математики. Если в ранней Вселенной все четыре измерения вели себя как пространственные, то что же происходит с началом времени?

Осознание того, что время может вести себя как еще одно направление в пространстве, дает возможность избавиться от той проблемы, что у времени должно быть начало, подобно тому как мы избавились от представления о крае мира. Предположим, что начало Вселенной — это нечто вроде Южного полюса Земли, а градусы широты играют роль времени. Окружности с постоянной широтой (на географической карте они называются параллелями) будут изображать размер Вселенной. По мере движения от Южного полюса на север эти окружности расширяются. Вселенная началась как точка на Южном полюсе, но Южный полюс мало чем отличается от любой другой точки. Спрашивать, что было до начала Вселенной, станет бессмысленно, потому что южнее Южного полюса ничего нет. В этом примере пространство-время не имеет границы — на Южном полюсе законы природы такие же, как и в других местах. Аналогично этому, когда общую теорию относительности объединяют с квантовой теорией, вопрос о том, что произошло до начала Вселенной, выглядит бессмысленным. Это представление о том, что истории Вселенной должны иметь вид замкнутых поверхностей без границ, называется условием безграничности.

В течение столетий многие, включая Аристотеля, чтобы избежать вопроса, как возникла Вселенная, полагали, что она должна была существовать всегда. Другие считали, что Вселенная имела начало, и использовали это как аргумент для доказательства бытия Бога. Понимание того, что время ведет себя подобно пространству, дает новую альтернативу. Это развеивает вековое возражение по поводу того, что Вселенная имела начало, но также означает, что началом Вселенной управляли научные законы и не было нужды в том, чтобы ее привел в движение некий Бог.

Если происхождение Вселенной было квантовым событием, оно должно точно описываться фейнмановской суммой историй. Однако непросто применить квантовую теорию ко всей Вселенной, где наблюдатели — часть наблюдаемой системы. В главе 4 мы видели, как частицы материи, пролетевшие через двухщелевую преграду, создали интерференционный узор, подобно волнам на воде. Фейнман объяснил это тем, что частица не имеет единственной истории, то есть, двигаясь из начальной точки Ав конечную точку В,она следует не по одной определенной траектории, а одновременно по всем возможным траекториям, соединяющим эти точки. С такой позиции интерференция не удивительна, потому что частица, например, может проходить одновременно через обе щели и интерферировать сама с собой, без взаимодействия с другими частицами. Применительно к движению частицы метод Фейнмана говорит нам, что для вычисления вероятности попадания частицы в любую конечную точку нужно рассмотреть все возможные истории, по которым частица могла проследовать из начальной точки в конечную. Методы Фейнмана можно использовать, чтобы рассчитать квантовые вероятности для наблюдений Вселенной. Если их применить к Вселенной в целом, то не может быть никакой точки А,поэтому мы сложим все истории, которые удовлетворяют условию безграничности и заканчиваются во Вселенной, наблюдаемой нами сегодня.

В таком понимании Вселенная появилась самопроизвольно и начала развиваться всеми возможными путями. Большинство из них относится к другим вселенным. Хотя некоторые из тех вселенных похожи на нашу, большинство из них сильно отличаются от нее, причем отличаются не только

в деталях (таких, например, как действительно ли Элвис Пресли умер молодым или подают ли морковь на десерт), главное — они отличаются даже своими очевидными законами природы. В действительности существует множество вселенных с множеством различных наборов физических законов. Кое-кто делает великую загадку из этой идеи, которую иногда называют концепцией мультивселенной, но это всего лишь иные выражения фейнмановской суммы по всем историям.

Чтобы представить себе это, изменим предложенную Эддингтоном аналогию с надувным шариком и вместо этого представим расширяющуюся Вселенную в виде поверхности пузыря. Наша картина самопроизвольного квантового возникновения Вселенной будет тогда немного напоминать появление пузырьков пара в кипящей воде. Множество крошечных пузырьков появляется, а потом снова исчезает. Они подобны мини-вселенным, которые расширяются, но тут же лопаются, будучи все еще микроскопического размера. Эти пузырьки представляют собой возможные альтернативные вселенные, но они не вызывают большого интереса, так как их жизнь слишком коротка, чтобы дать развиться галактикам и звездам, не говоря уж о разумной жизни. Однако некоторые пузырьки вырастают до столь крупных размеров, что уже не лопаются. Они будут продолжать расширяться со всё возрастающей скоростью и образуют пузырьки пара, которые мы можем видеть. Такие пузырьки соответствуют вселенным, начинающим расширение при постоянно растущей скорости, — иными словами, вселенным в состоянии инфляции.

Мультивселенная. Квантовые флуктуации ведут к появлению крохотных вселенных из ничего. Некоторые из них достигают критического размера, затем, благодаря инфляции, расширяются, формируя галактики, звезды и — по крайней мере в одном случае — существ вроде нас.

Как мы уже говорили, вызванное инфляцией расширение вселенных не совсем однородно. В сумме по историям есть лишь одна полностью однородная и регулярная история, и она будет иметь наибольшую вероятность. Но и многие другие, лишь слегка неоднородные, будут иметь почти такие же вероятности. Вот почему инфляция предсказывает, что ранняя Вселенная, скорее всего, была слегка неоднородной, что соответствует тем небольшим различиям в интенсивности, которые были обнаружены у космического микроволнового фонового излучения (КМФИ). С неоднородностями в ранней Вселенной нам повезло. Почему же повезло? Да потому что однородность хороша, если вы не хотите, чтобы сливки отделились от молока, но однородная вселенная — скучная вселенная. Неоднородности в ранней Вселенной важны потому, что если некоторые области имеют чуть большую плотность, чем остальные, то гравитационное притяжение избыточной плотности замедлит расширение этой области по сравнению с окружающими. Поскольку сила гравитации медленно стягивает материю, это в конечном счете может привести к коллапсу и образованию галактик и звезд, что повлечет за собой появление планет и по крайней мере в одном случае — людей. Поэтому посмотрите внимательно на карту неба в микроволновом диапазоне. Это проектный чертеж всех структур во Вселенной. Мы являемся продуктом квантовых флуктуаций в очень ранней Вселенной. Верующий человек мог бы сказать об этом: Бог действительно играет в кости со Вселенной.

Эта идея приводит к представлению о Вселенной, которое глубоко отличается от традиционной концепции и требует изменения нашего подхода к истории Вселенной. Чтобы делать прогнозы в космологии, нам нужно рассчитать вероятности различных состояний Вселенной в настоящее время. В физике обычно выдвигают предположение о некотором начальном состоянии системы, а затем рассматривают ее развитие во времени, используя соответствующие математические уравнения. Учитывая данные о состоянии системы в какое-то время, можно пытаться вычислить вероятность того, что система будет в каком-то другом состоянии в более позднем времени. В космологии обычно предполагают, что у Вселенной одна определенная история. Используя законы физики, можно рассчитать, как эта история развивается во времени. В космологии такой подход называется «снизу вверх». Но поскольку мы должны принимать во внимание квантовую природу Вселенной, выражаемую фейнмановской суммой по историям, то амплитуда вероятности того, что Вселенная сейчас находится в определенном состоянии, получается суммированием вкладов от всех историй, которые удовлетворяют условию безграничности и приводят к рассматриваемому (исходному) состоянию. Иными словами, в космологии не нужно прослеживать историю Вселенной «снизу вверх», поскольку это предполагает существование единственной истории с четко определенными исходной точкой и развитием. Вместо этого нужно проследить истории «сверху вниз», перемещаясь назад от настоящего времени. Некоторые истории будут более вероятны, чем другие, а в их сумме, как правило, будет преобладать единственная история, которая начинается с возникновения Вселенной и заканчивается в рассматриваемом состоянии. Но возможны и другие истории, которые привели бы к тому, что в настоящее время у Вселенной могли бы иметься иные состояния. Из этого проистекает совершенно другой взгляд на космологию и на отношение между причиной и следствием. Истории, включенные в фейнмановскую сумму, не имеют независимого существования, они зависят от того, что измеряется. Скорее мы создаем историю Вселенной своим наблюдением, чем ее история создает нас.

Поделиться:
Популярные книги

Менталист. Конфронтация

Еслер Андрей
2. Выиграть у времени
Фантастика:
боевая фантастика
6.90
рейтинг книги
Менталист. Конфронтация

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Адвокат вольного города 2

Парсиев Дмитрий
2. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 2

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Четвертый год

Каменистый Артем
3. Пограничная река
Фантастика:
фэнтези
9.22
рейтинг книги
Четвертый год

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Повелитель механического легиона. Том IV

Лисицин Евгений
4. Повелитель механического легиона
Фантастика:
фэнтези
технофэнтези
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том IV

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Целительница моей души

Чекменёва Оксана
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Целительница моей души

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия