Я познаю мир. Арктика и Антарктика
Шрифт:
А что за время сейчас? Оледенение, межледниковье или что–нибудь третье – например, послеледниковье, и ледники больше не станут наступать? Трудно сказать. Известно, например, что около 200 лет назад достиг максимума и постепенно ослабевает малый ледниковый период – эпоха похолодания, проявившаяся не только в Европе (и выгнавшая викингов из гренландских поселений), но и в других районах Земли. Вплоть до 1930–ых годов ледовые условия Арктики были настолько тяжелыми, что все попытки пробиться на север на кораблях оканчивались неудачей (вспомним трагически закончившийся в 1912 году поход к Северному полюсу экспедиции старшего лез гтенанта Георгия Яковлевича
Г. Я. Седов
И впервые в истории мореплавания небольшое деревянное судно «Николай Книпович» обогнуло с севера Землю Франца–Иосифа, пароход «Сибиряков» – Северную Землю. В 1938 году ледокол «Ермак» в районе Новосибирских островов прошел до 83°05' с.ш. – а в 1901 году он не смог добраться даже до северной оконечности Новой Земли.
В 1960–х годах началось новое похолодание, и льды разрослись на 0,8 миллиона квадратных километров. В 1970–х годах произошло новое потепление.
Но эти колебания несравнимы по масштабам с великими оледенениями и разделяющими их межледниковьями. Так что вопрос о будущем климата Земли пока открыт. Может быть, победит парниковый эффект, и наступит небывалое потепление? А может сильнее окажется растущая запыленность атмосферы, и нас ждет похолодание?
Что такое лед
Лед – самая распространенная горная порода в Солнечной системе. Марс, Юпитер, Сатурн, Уран содержат огромные массы льда, а некоторые спутники планет сложены из него почти целиком. Например, галилеевы спутники Юпитера (Ио, Европа, Ганимед и Каллисто) состоят из льда примерно на 70–90%. Головы комет также представляют собой, как правило, ледяные глыбы.
Как образуется лед в межзвездном пространстве и в Солнечной системе, до конца неясно. Среди существующих на этот счет точек зрения немало весьма любопытных – например о покрытой льдом планете Фаэтон, некогда существовавшей между орбитами Марса и Юпитера, а затем расколовшеся на множество частей; о случайном прилете в пределы Солнечной системы ледяных тел из межзвездных пространств; о ледяном спутнике Земли, упавшем на Землю около 20 тысяч лет назад и вызвавшем Всемирный потоп (известный из легенд и преданий). Во всяком случае, и в наши дни на Землю падают ледяные метеориты.
Ледяное тело из лежзв> здных пространств
Льда на Земле не так много, как на Юпитере, но и не так мало, как на Марсе: больше десятой части суши занято многолетними льдами, а пятая часть всей планеты ежегодно покрыта снегом.
Важно при этом, что самая обычная и привычная нам вода обладает удивительным и редким свойством. Так же, как и многие другие вещества, вода при понижении температуры переходит из газообразного состояния (водяной пар) в жидкое, а затем – ив твердое (лед).
Но в отличие от большинства других веществ, вода при замерзании не уменьшается, а увеличивается в объеме. Поэтому плотность льда меньше плотности воды, и он способен плавать
Частички воды, превращаясь в лед, могут, соединяться между собой разными способами и образовывать разные льды. Это похоже на поведение частичек углерода, которые тоже соединяются между собой по–разному, в зависимости от того, в каких условиях (при какой температуре и каком давлении) им приходится это делать. В итоге из одного и того же вещества – углерода – получается либо графит (мы хорошо знаем его по стержням в простых карандашах), мягкий, разрушающийся даже при соприкосновении с бумагой, либо алмаз – самый твердый из земных минералов, используемый в стеклорезах, сверлах и других инструментах. Разными бывают и льды.
В начале XX века немецкий ученый Г. Тамман открыл, а американский физик П. Бриджмен исследовал явление полиморфизма (многоформенности) льда. Оказалось, что существует около десяти разновидностей льда, и тот, с которым мы сталкиваемся в природе, – лишь одна из многих модификаций (ее называют лед–1).
Все другие льды тяжелее воды и отличаются от обычного многими свойствами. Лед–VI возникает при очень высоком давлении и тает при температуре 80°С (а не 0°С, как лед–1), а лед–VII выдерживает нагрев почти до 200°С. Похоже, что он иногда образуется при очень высоком давлении, которое возникает вблизи работающих турбин гидроэлектростанций, и из–за своей высокой твердости приводит к авариям. А в условиях, похожих на космические, был получен лед, в 2–2,5 раза плотнее всех других. Его свойства пока почти не известны.
Но и привычный нам лед–1 бывает разным. Лед, образующийся в атмосфере, отличается от льда, образующегося на поверхности суши или океана, – но главным образом не строением, а присутствием примесей. Например, в морских льдах есть частички солей, а в подземных – частички горных пород.
Льды и ледники
Ледниками называют скопления льда, но не любые, а те, что образуются на поверхности планеты без вмешательства человека (то есть морозильные, камеры ледниками не считаются).
И рождением своим, и смертью ледники обязаны свойству воды, отличающему ее от большинства других веществ: способности в обычных земных условиях пребывать в трех разных состояниях (жидком, твердом и газообразном).
С этим свойством связан круговорот воды в природе. Главные процессы этого круговорота – испарение воды (из водоемов); перемещение паров в атмосфере; их конденсация (то есть превращение из пара в жидкую воду); выпадение на поверхность Земли в виде различных осадков (дождя, снега, града и т.д.) и стекание воды с континентов в океаны. Энергией эти процессы обеспечивают Солнце и сила тяжести.
Если температуры воздуха достаточно низки, выпавший снег не успевает растаять даже за лето (возникают так называемые снежники–перелетки, то есть сугробы, переживающие лето, «перелетовывающие»). Снег в них оказывается погребенным под всё более мощными толщами свежевыпавшего снега. Давление вышележащих слоев, а также периодическое замерзание и оттаивание воды, просачивающейся на глубину, приводит к тому, что он превращается в фирн (от немецкого Firn – прошлогодний, старый) – крупнозернистый уплотненный лед.