Чтение онлайн

на главную - закладки

Жанры

Я познаю мир. Авиация и воздухоплавание
Шрифт:

В сравнении с единственным на Западе самолетом вертикального взлета «хариер», развивающим скорость до 1000 км/ч, аппарат комбинированной тяги позволяет в принципе достичь той же скорости при более низком расходе горючего и большей маневренности. А ведь именно огромный расход топлива при взлете и посадке ограничивает широкое распространение «хариеров» и им подобных машин.

Вот несколько цифр для сравнения: вертолет на одну лошадиную силу мощности поднимает 5,5 кг груза, а вертикально стартующий самолет — лишь около 2 кг. До 40 % взлетного веса «хариера» составляет топливо, у геликоптера его масса достигает лишь 2 %.

Однако

не надо думать, что все проблемы X-крыла уже решены. При наборе скорости у вращающегося крыла возникают, например, такие неприятности: с одной стороны происходит обдувание потока ведущей кромки, с другой — задней. В какой-то момент разница в подъемной силе становится настолько ощутима, что аппарат может потерять устойчивость. Словом, «свалится с неба, как рояль», — так образно оценил ситуацию один из его пилотов-испытателей.

Чтобы подобное не происходило, конструкторы решили использовать симметричные полые роторы с одинаковыми передними и задними кромками. Кроме того, внутрь лопастей подается под давлением воздух, который, выходя на поверхность через множество крошечных отверстий, предотвращает на начальном этапе срыв воздушного потока.

Еще один каверзный момент полета — переход от вертолетного режима к самолетному. В течение 20 секунд, пока лопасти закрепляются с помощью гидравлических тормозов, а двигатели выходят на новый режим, аппарат пребывает в неустойчивом положении. Чтобы стабилизировать его и сохранить управляемость, конструкторам пришлось прибегнуть к помощи компьютера.

— Но, как показывают расчеты, все трудности могут быть успешно преодолены, — полагает Артур Линден. — Мы уверены, мечта Сикорского наконец-таки исполнится.

На мирных трассах

Сердце самолета

Виды реактивных двигателей

Мы уже говорили о том, что надутый, но незавязанный воздушный шарик летает за счет реактивной тяги. На том же принципе работают и реактивные двигатели в авиации. Рассмотрение их конструкций давайте начнем с прямоточного воздушно-реактивного двигателя — ПВРД. Он имеет наиболее простую схему.

Представьте себе металлическую трубку, движущуюся в воздушном потоке. Передний край трубки вбирает в себя воздух — это воздухозаборник. Из сопла — задней части трубки — выходят отработанные газы. Средняя часть — камера сгорания.

Для разгона попадающего в трубку воздуха сделаем в ее средней части маленькое отверстие и вставим в него тонкую трубочку — форсунку. Через нее будем впрыскивать в камеру какое-нибудь топливо (лучше всего керосин) и подожжем его электрическим разрядом.

< image l:href="#" />
Современный турбореактивный двигатель

Теперь все части ПВРД стали оправдывать свои названия. Воздухозаборник всасывает воздушный поток. В камере сгорания горит воздушно-топливная смесь. Температура газа при этом повышается, возрастает скорость его движения. Раскаленные газы с силой выбрасываются через сопло, создавая реактивную тягу.

Схема
турбореактивного двигателя: 1 — воздухозаборник; 2 — компрессор; 3 — камера сгорания; 4 — турбина; 5 — реактивное сопло

ПВРД может работать лишь тогда, когда на входе имеется скоростной напор воздуха. Значит, стартовать с таким двигателем летательный аппарат не может. Его нужно предварительно разогнать.

Обычный самолет разгоняется при помощи воздушного винта, который вращается двигателем внутреннего сгорания — ДВС. Однако, как показала практика, такой двигатель не может обеспечить ни большой скорости полета, ни большой мощности.

А что, если мы попробуем винтом-пропеллером просто разгонять поток воздуха на входе реактивного двигателя? Благодаря такой догадке появился ТРД — турбореактивный двигатель. Чтобы запустить его, к компрессору подсоединяют стартер. Он раскручивает вал с лопатками, те загребают воздух и направляют его внутрь. Реактивный двигатель начинает работать.

Теперь стартер можно и отключить, поскольку конструкторы предусмотрели такую хитрость. На пути раскаленных газов к соплу они поставили дополнительно газовую турбину и соединили ее единым валом с компрессором. Выходящие газы крутят турбину, соединенный с ней компрессор нагнетает воздушный поток в камеру сгорания, топливновоздушная смесь горит, горячие газы вырываются из сопла, и цикл повторяется снова.

Вроде бы все достаточно просто. Однако такой простоты инженеры добивались не одну сотню лет. Ведь первые газовые турбины были известны еще в Древней Греции. Герон, например, развлекался тем, что выпускал струи пара из сосуда, в котором кипела вода, на крыльчатку, наподобие той, что выставляют мальчишки на ветер. И крыльчатка

Герона исправно крутилась, даже когда никакого ветра не было.

Но должны были пройти многие века, даже тысячелетия, чтобы игрушка превратилась в действительно нужное, полезное изобретение.

"На решение проблемы газовой турбины уже затрачена громадная умственная работа, и не только изобретателями и учеными, но и производственными фирмами; для развития этого типа машин принесены также громадные финансовые жертвы, но пока не достигнуто никакого практического результата".

Так писала техническая энциклопедия еще в 1934 году.

Конечно, какие-то турбины в то время уже существовали. Но именно «какие-то». Скажем, в 1940 году словацкий инженер Аурель Стодола, всю свою жизнь посвятивший турбинам, сумел построить лучший по тому времени агрегат из жаропрочных сталей, выдерживающих нагрев внутри до 650 °С. Но коэффициент полезного действия (КПД) такой турбины составлял всего 18% . Чтобы добиться большего, нужны были еще более жаропрочные материалы.

Лишь когда появились сплавы, могущие сохранять рабочую форму, будучи даже раскаленными добела, когда конструкторы научились охлаждать лопатки во время работы (многие из них теперь умеют «потеть», то есть выделять через крошечные отверстия в теле лопатки охлаждающие газы), когда были разработаны десятки конструкций с более-менее высоким КПД, турбовинтовые двигатели завоевали себе прочное место в авиации.

Поделиться:
Популярные книги

Потомок бога

Решетов Евгений Валерьевич
1. Локки
Фантастика:
попаданцы
альтернативная история
аниме
сказочная фантастика
5.00
рейтинг книги
Потомок бога

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева