Я познаю мир. Биология
Шрифт:
image l:href="#"
Колпица
Электрические рыбы
Чтобы вы подумали, увидев маленькую рыбку, висящую у самой поверхности воды головой вниз, как будто ее кто–то подвесил за хвостик? И мало того, что она висит, она еще потихоньку плывет брюхом вперед, не меняя при этом своей экстравагантной позы.
А что можно подумать о рыбке, которая плывет на боку у самого дна, да к тому же хвостом вперед? Странные рыбки! С ними встретились наши ученые, побывавшие в Южной Америке на реке Укаяли, крупном притоке Амазонки. Не только поведение, но и название этих рыб необычное. Зоологи называют их
Зоологи делят электрических рыб на две группы. Одни из них вырабатывают такой сильный ток, что с его помощью охотятся на мирных рыбешек, лягушек и водяных змей. Разряды электрического угря такой силы, что могут сбить с ног не только человека, но и лошадь. Это очень интересные существа, но сейчас речь пойдет о рыбах второй группы, о слабоэлектрических рыбешках. Они генерируют электрические разряды небольшой силы и, взяв их в руки, человек не испытает неприятных ощущений.
image l:href="#"
Электрический угорь
Между обеими группами электрических рыб большая разница. Охотники, владеющие электрическим оружием, – это крупные рыбы или рыбы средней величины. Свое оружие они используют и для обороны, если им кто–нибудь угрожает, и для охоты, когда вблизи появляется подходящая «дичь» или хотя бы возникает подозрение, что рядом находятся существа, которых можно съесть.
Другое дело – слабоэлектрические рыбы. Среди них много совсем маленьких рыбешек, а свои электрические разряды они генерируют, если и не непрерывно, то во всяком случае длинными сериями в течение десятков минут, причем производят от 50 до 1000, а иногда и больше разрядов в секунду. Величина этих разрядов настолько мала, что обнаружить их удается лишь чувствительными электроизмерительными приборами. Невольно возникает вопрос: зачем эти рыбы обзавелись электрическими органами, для чего прилежно генерируют электричество и способны ли сами ощущать слабые электрические разряды?
Вода природных водоемов, рек, озер, прудов, болот и особенно соленая вода морей, хорошо проводит электричество, а в живом организме, в каждой его клеточке, постоянно осуществляются электрические реакции. Они возникают и в неживой неорганической природе. Если в каком–то участке водоема изменяется температура воды, ее соленость, появляются примеси других веществ или скопления живых организмов, всё это будет сопровождаться возникновением электрических реакций. В результате различные участки водоема будут отличаться по величине своего электрического заряда и между ними, как между полюсами батарейки, потечет ток. Величина этого тока, конечно, мизерна, но в результате в водоеме создаются постоянно изменяющиеся электрические поля.
Тела живых организмов прекрасно проводят электричество. Живя в постоянно меняющемся электрическом мире водоемов, участвуя в создании, изменении или искажении существующих электрических полей, живые организмы не могли «пройти» мимо таких явлений окружающей их среды, не отреагировать на эти поля. Вот почему у многих водяных организмов появились электрорецепторы – специальные органы, способные с феноменальной чувствительностью улавливать малейшие изменения электрической обстановки в водоеме и анализировать ее, с тем чтобы установить причину, вызывающую эти изменения.
Электрорецепторы
Специфические чувствительные приборчики – электрорецепторы обнаружены лишь у водных позвоночных: миксин и миног, акул и скатов, костистых рыб. Они входят в число рецепторных органов боковой линии или просто разбросаны в коже разных участков тела.
image l:href="#"
Миксина (слева) и минога
Наиболее часто встречаются электрорецепторы двух типов. Одни из них названы ампулярными, от слова ампула. Они представляют собой канал, расположенный
Канал заполнен желеобразной жидкостью, хорошо проводящей электричество, а стенки канала – хорошие изоляторы. Благодаря такому устройству электрический ток, возникающий в воде, без серьезных потерь добирается до воспринимающих ворсинок, а электрические токи самих рыб добраться до них не могут. Стенки канала надежно изолируют рецепторы от электрических реакций, возникающих в собственном теле рыбы.
Другой тип – бугорковые электрорецепторы. Они названы так потому, что в виде крохотных бугорков выступают на поверхности кожи. Электрочувствительные клетки находятся во внутренней полости бугорка. Она никак не соединена с наружной средой, однако оболочки клеток верхней стенки бугорка хорошо проводят электричество, но от разрядов, возникающих в собственных электрических органах, рецепторные клетки также надежно изолированы.
По своей чувствительности бугорковые рецепторы серьезно отстают от ампулярных, но они предназначены для контроля более сильных полей, создаваемых самой рыбой. Ампулярные же рецепторы используются для обнаружения электрических полей, создаваемых работающими мышцами других существ. Вот почему бугорковые рецепторы бывают только у электрических рыб, а ампулярными нередко оснащены и другие существа, у которых нет собственных электрических органов.
Чувствительности электрорецепторов рыб могут позавидовать созданные людьми электроизмерительные приборы. Некоторые рыбы ощущают изменение в напряженности электрического поля, если на протяжении 1 см оно уменьшается или возрастает всего на 0,0000001—0,000001 вольта. Если поле, производимое слабенькой батарейкой от карманного фонарика, «размазать» по 200–километровой дистанции, изменение напряженности на 1 см длины все равно будет в несколько раз больше.
Электрорецепторные клетки рыб беспрерывно шлют в их мозг нервные импульсы с постоянной скоростью 10–30 импульсов в секунду. Если напряженность электрического поля вокруг рыбы меняется, изменяется и реакция рецепторов. Электрический ток, текущий в направлении от электрорецепторов в сторону воды, у акул и скатов, живущих в морской соленой воде, вызывает увеличение частоты импульсов, а ток, текущий в направлении электрорецепторов, замедляет их генерацию.
У пресноводных рыб все наоборот: реакцию их рецепторов усиливает ток, текущий в направлении электрорецепторов, а ток противоположного направления уменьшает частоту электрических разрядов. Мозг рыб анализирует и сопоставляет информацию, поступающую от рецепторов разных участков тела, и на основании проведенного анализа делает выводы о причинах изменения электрической обстановки.
Ножетелка и ее электролокатор
Небольшие рыбешки чёрные ножетелки длиной 10–15 см ведут ночной образ жизни. Днем они прячутся в убежищах: в дуплах затопленных деревьев, между их корней или в нишах под берегом среди обнажившихся корней прибрежных кустов. Они не просто прячутся там – не отдыхают, не спят, а ведут себя весьма активно. Забравшись в убежище на рассвете, они на протяжении часа беспрерывно раскачиваются из стороны в сторону. Затем на 20–30 минут все–таки делают перерыв на отдых, ложатся на бок и замирают. Отдохнув, а, может быть, выспавшись, они начинают медленно вращаться вокруг своей продольной оси, тщательно «ощупывая» кончиком рыла стенки своего укрытия и при этом беспрерывно генерируют электрические разряды. Убедившись, что всё в порядке, ножетелка, приняв нормальное положение, начинает раскачиваться и так ведет себя все светлое время суток.