Чтение онлайн

на главную - закладки

Жанры

Юный техник, 2000 № 11
Шрифт:

Первые сверхчувствительные приемники — примерно такие же, как те, что ранее использовались для приема информации от межпланетных станции, работавших в районе Венеры, — уже появились в лабораториях и врачебных кабинетах. После компьютерной обработки сигналов специалисты получают в свое распоряжение пассивную функциональную томограмму. То есть фактически оценивают трехмерное распределение температур в теле пациента, не облучая его. Зоны воспаления и опухоли сразу выдают себя местам повышением температуры.

ТЕПЛОЕ ОКНО создано в Институте катализа Сибирского отделения РАН Такое окно

пропускает солнечные лучи внутрь помещения и практически не выпускает тепло из квартиры. Вместо обычного стекла используется новый материал — аэрогель на основе кремния. Этот созданный в институте прозрачный материал без цвета и запаха считается наиболее эффективным в мире теплоизолятором. Если оснастить «теплыми окнами- квартиру полностью, то потребность в ее обогреве упадет вдвое.

СУПЕРТРУБА стоит в новосибирском Академгородке. Здесь построена уникальная сверхзвуковая азродинамовская труба для испытания прототипов летательных аппаратов, которые смогут двигаться со скоростями 8 — 20 М, то есть во много раз превышая скорость звука. Таких самолетов и крылатых ракет еще нет, однако ученые Института теоретической и прикладном механики полагают, что их появление не за горами. Во всяком случае, к новой трубе уже проявили интерес аэродинамики США. Китая и, конечно, России. А сверхзвуковую трубу предыдущего поколения, работающую в том же институте, сейчас арендуют немецкие специалисты для испытаний прототипа своего новейшего истребителя.

ОСТРЫЙ РАКУРС

Рассказ о забытом законе

С понятием теплоемкости мы знакомимся в школе. И знаем, что это количество тепла, необходимое для нагревания одного кг вещества на один градус Цельсия. Теплоемкость измеряется в килоджоулях на килограмм и градус.

У воды от — 4,2 кДж/кг/град, у алюминия — 3,69, у свинца — только 0,756 — в общем у всех веществ разная. Величина теплоемкости любого вещества зависит еще от его температуры.

Для расчета устройств, при работе которых температура вещества сильно меняется, например, печей или тепловых двигателей, знать эту зависимость совершенно необходимо. Даже сегодня для этих целей приходится вести дорогостоящую, как правило многолетнюю, экспериментальную работу с целью составления справочных таблиц. Промышленность остро нуждается в таких данных, и не поддается учету, сколько ученых и лабораторий занято этим делом!

А теперь вернемся к делам знакомого уже нам с вами профессора МВТУ Алексея Нестеровича Шелеста (см. «ЮТ» № 9, 1999 г.).

В 1914 году при расчете своего тепловозного двигателя Алексей Нестерович получил столь высокое значение КПД, что отказался в это поверить.

Ученый разобрался, что повинны в этом таблицы теплоемкостей. Хоть и выпущенные разными очень серьезными научными школами, но данные их местами различались между собою на 50 и более процентов! Что прикажете делать при таких обстоятельствах? Составлять собственную правильную таблицу? Но на это потребуется полжизни! Да и где гарантия, что именно она будет точнее других?

И вот недавний выпускник института, инженер, занимавшийся вещами сугубо практическими: вагонами, рельсами, паровыми машинами и дизелями, даже водонапорными башнями — садится за квантовую механику.

Науку еще очень молодую, непонятную, почти никем не признанную. На ее основе выводит некие математические

зависимости, позволяющие точно рассчитывать теплоемкость любых веществ, и формулирует закон теплоемкости.

В 1922 году в Лейпциге на немецком языке вышла из печати книга А.Н.Шелеста «Теплоемкости газов и паров». В ней впервые был сформулирован закон теплоемкостей, объективно действующий в природе независимо от воли людей. Согласно этому закону молярные (относящиеся к одному молю вещества) теплоемкости всех тел прямо пропорциональны числу атомов в молекуле. Были разработаны формулы для определения молярных теплоемкостей жидкостей, твердых тел и газов.

Теплоемкость твердых и жидких тел по закону профессора А.Н.Шелеста определяется по формуле:

Cp= Z x 4,157(lnT/36,09 + 1) кДж/молК.

Теплоемкость газов в зависимости от температуры находится по другой формуле:

Cv= Z х 4,157(lnT/98,1 + 1) кДж/молК,

где Z — число атомов в молекуле, Т — температура в градусах Кельвина.

(Чтобы перейти от молярной к более привычной теплоемкости одного кг вещества, достаточно ее разделить на молекулярный вес.)

Надо сказать, что потребность техники в точном знании теплоемкости с каждым годом росла. И ученые-экспериментаторы всячески шли ей навстречу, хотя это было не просто. Вот как, например, выяснили теплоемкость газов. Из-за малой плотности определять ее непосредственно, как, например, это делается для твердых тел на лабораторных работах в школе, не удавалось. Приходилось прибегать к косвенным методам.

Один из них основан на измерении скорости звука в газе. Газом наполняется длинная труба. С одной стороны она закрыта упругой стальной мембраной, по которой ударяют молотком.

АППАРАТ ШЕНТЬЕ ДЛЯ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ.

Четыре одинаковых по размерам и массе цилиндра из различных металлов нагревают в ванне с кипятком и ставят на брусок парафина, и каждый из них погружается в парафин па глубину, пропорциональную теплоемкости вещества, из которого он сделан.

ДВИЖЕНИЕ БРОУНОВСКОЙ ЧАСТИЦЫ под микроскопом, зарисованное наблюдателем, характеризует тепловое движение атомов и молекул, своеобразный образец хаоса.

Время распространения звуковой волны в газе регистрируется точным прибором. Зная температуру и плотность газа, расчетным путем по формуле Лапласа находится теплоемкость.

Шелест показал, что только лишь ошибка в измерении скорости звука на одну сотую секунды дает в этом опыте ошибку в измерении теплоемкости на 46,6 процента! А ведь есть еще неточности в измерении температуры, плотности и много-много других. Не отличались точностью и другие методы. Но как бы там ни было, ученые к началу 20-х годов значительно повысили точность измерения теплоемкости.

Поделиться:
Популярные книги

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Товарищ "Чума"

lanpirot
1. Товарищ "Чума"
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Товарищ Чума

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Контракт на материнство

Вильде Арина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Контракт на материнство

Имперец. Земли Итреи

Игнатов Михаил Павлович
11. Путь
Фантастика:
героическая фантастика
боевая фантастика
5.25
рейтинг книги
Имперец. Земли Итреи

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Ищу жену с прицепом

Рам Янка
2. Спасатели
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Ищу жену с прицепом

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути