Юный техник, 2008 № 11
Шрифт:
http://www.7pd.ru
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Сила света
«Посветите на эту резинку, и она буквально запрыгает от радости», — уверяют создатели этого удивительного материала. Причем, как пишет журнал New Scientist, за этой шуткой английских и немецких ученых кроется перспективное изобретение.
Сегодня создатели роботов-андроидов стараются сделать их все более похожими на людей. А для этого, кроме прочего, им нужны не только
Большую часть таких «мышц» производят из полимеров, которые сокращаются, если к ним приложить электрическое напряжение. «А что, если попробовать использовать свет?» — подумали Марк Уорнер из Кембриджского университета, Великобритания, и Хейно Финкельманн из Фрибургского университета, Германия.
Логика рассуждений у них была примерно такая.
В темноте людям свойственно спать. Стало быть, и обслуживающие их роботы в темное время суток не нужны. А с рассветом, как и люди, они пробуждаются и начинают действовать, благодаря полимерным мускулам, которые реагируют на свет.
Для этого в эластичный полимер со сложным названием «полигидрометилсилоксан» добавили своеобразные химические красители. Под действием ультрафиолетового излучения с длиной волны 365 нанометров молекула красителя начинает поглощать свет и изгибаться, в результате чего полимер сокращается.
«Обычно время реакции составляет 1–2 секунды, — поясняет Уорнер. — Однако процесс может быть ускорен, если в материал добавить пластификаторы».
Так работают резиновые «мускулы»:
1— стержнеобразные группы, придающие материалу форму; 2— светочувствительные азо-красители; 3— полимерная цепь; 4— светочувствительный мускул, реагирующий на свет, а не на электрический ток.
Пластификаторы действуют подобно смазке. В результате цепи полимеров легче скользят друг относительно друга. Увеличение интенсивности ультрафиолетового излучения также уменьшает время сокращения.
«Расслабить», или вернуть искусственный мускул в исходное состояние, можно двумя способами. В темноте изогнутые молекулы постепенно распрямляются — происходит выравнивание стержней в течение нескольких часов. Однако можно выпрямить молекулы и быстро, если облучить их импульсом ультрафиолета с длиной волны 450 нанометров.
Исследователи выяснили, что величина сокращения светочувствительных мускулов может составлять от 20 до 75 % от их первоначальной длины. Уже этого достаточно, чтобы создать на основе светочувствительной резины устройство для управления микрохирургическими зажимами и пинцетами. А в будущем, при дальнейшем усовершенствовании светочувствительных полимеров, на их основе можно будет конструировать и новое поколение роботов-андроидов.
Публикацию подготовил С. СЛАВИН
С ПОЛКИ АРХИВАРИУСА
Охота за молнией
Мы
И в XIX, и в начале XX века предпринимались попытки получить электричество из воздуха в промышленных масштабах. Так, в середине XIX века электричество из атмосферы получали американцы Лумис и Уард. Мелон Лумис успешно использовал атмосферное электричество для питания длинных, в сотни миль, телеграфных линий и для первых опытов по беспроводной связи. Но атмосферное электричество не отличается постоянством и зависит от погоды. С появлением более удобных источников электроэнергии — динамо-машин и гальванических элементов — эти опыты были остановлены. И все же одним из результатов работ того времени мы пользуемся почти каждый день. Это свинцовый аккумулятор.
Изначально французский изобретатель Гастон Планте создал его для накопления атмосферного электричества, но высоким напряжением атмосферного электричества заряжать аккумуляторы оказалось невозможно.
В 1898 г. немецкий инженер Генрих Рудольф предложил интересную конструкцию привязного аэростата. Он должен был иметь форму эллипсоида, покрытие из металлизированной ткани и легкую металлическую раму для сбора атмосферного электричества. На землю оно передавалось по металлическому тросу, удерживающему аэростат.
Аэростат этот не был построен. Поэтому лидером в этой области можно считать Германа Плаусона, эстонца по происхождению, жившего и работавшего в Германии и Швейцарии. Он провел эксперименты с аэростатами, изготовленными из тонких листов магниево-алюминиевого сплава, покрытых очень острыми, электролитическим способом изготовленными иглами. Иглы могли содержать также примесь радия, чтобы увеличить местную ионизацию воздуха.
В то время еще плохо знали о радиоактивной опасности и широко использовали, например, часы со стрелками, покрашенными радиоактивными составами и светящимися в темноте. Поверхность аэростата также красили цинковой амальгамой, которая в солнечную погоду давала дополнительный ток вследствие фотоэффекта.
Плаусон получил мощность 0,72 кВт от одного аэростата и 3,4 кВт от двух, поднятых на высоту всего лишь 300 м. На свои устройства он в 1920-х годах получил патенты США, Великобритании и Германии. Его книга «Gewinnung und Verwertung der atmosphaerischen Elektrizitaet» («Получение и применение атмосферного электричества») содержит детальное описание всей технологии.
Десятки и сотни таких аэростатов-электростанций Плаусонмечтал увидеть в небе.