Чтение онлайн

на главную - закладки

Жанры

Загадки для знатоков. История открытия и исследования пульсаров
Шрифт:

А. Камерон не задал вопрос: как должна выглядеть для наблюдателя нейтронная звезда? В физике есть закон излучения Вина: чем больше нагрето тело, тем более короткие волны оно излучает. Солнце нагрето до 6 тысяч градусов и представляется нам желтым. Температура белых карликов в несколько раз выше — они бело-голубые. А нейтронная звезда, температура которой может достигать и миллиона градусов, будет испускать уже мягкие рентгеновские лучи. Напиши А. Камерон об этом, и он предвосхитил бы возникновение рентгеновской астрономии. И тогда открытие в 1962 году первого рентгеновского источника за пределами Солнечной системы было бы не случайным, а следствием планомерного поиска. А. Камерон об этом не написал. А работа В. А. Амбарцумяна и Г. С. Саакяна вышла уже после открытия рентгеновских космических

источников. Предсказание не состоялось.

Работы В. А. Амбарцумяна и Г. С. Саакяна, опубликованные в начале шестидесятых годов, стали следующим шагом в познании строения сверхплотных звезд. Эти работы были попыткой примирить идею о массивных взрывающихся дозвездных Д-телах, из которых рождаются звезды, с современной физикой — с теорией строения вещества и теорией тяготения.

Советские ученые тоже стояли перед противоречием. Сверхплотные тела должны быть массивны (ведь из одного Д-тела образуются сотни звезд в ассоциациях), и они не могут быть массивны (так утверждает теория строения сверхплотных звезд). Как быть? Может, в сверхплотных телах все же есть силы отталкивания, способные противостоять силе тяжести, значительно больше той, что «правит бал» в нейтронных звездах А. Камерона?

Сначала казалось, что найти такую силу можно. В звездах, рассчитанных А. Камероном, отталкивание создают ядерные силы, действующие между нейтронами. А что если взять более тяжелые частицы? Ведь у тяжелых частиц — их называют гиперонами — и силы отталкивания больше. Звезды, описанные В. А. Амбарцумяном и Г. С. Саакяном, были гиперонными звездами. В их центральных областях вместо нейтронного газа был газ из более тяжелых частиц — гиперонов. Чем больше силы отталкивания, тем более массивной могла бы быть звезда. Могла бы, но не стала. Максимальная масса гиперонной звезды, по расчетам В. А. Амбарцумяна и Г. С. Саакяна, оказалась равной всего 1 массе Солнца! Даже меньше, чем нейтронная звезда А. Камерона.

Вот что писали в 1961 году В. А. Амбарцумян и Г. С. Саакян: «Можно ли для гиперонных звезд получить массы, во много раз превышающие массу Солнца, если подходящим образом выбрать функцию потенциала отталкивания? Для статических конфигураций ответ отрицателен. Проведенные нами расчеты убеждают, что при разумном выборе величины радиуса действия сил отталкивания, независимо от их интенсивности, невозможно получить статические конфигурации с большими массами».

Итак, противоречие было разрешено в пользу теории. Термин «гиперонные звезды», однако, так и не прижился. Дело в том, что гипероны существуют лишь вблизи центра звезды. Даже гиперонная звезда В. А. Амбарцумяна и Г. С. Саакяна состоит в основном из нейтронов.

Почему это так? И почему вообще в нейтронной звезде могут образоваться гипероны? Посмотрим, как, по современным представлениям, меняется структура сверхплотной звезды по мере ее сжатия.

Средняя плотность белого карлика — одна тонна в кубическом сантиметре. Если массу белого карлика увеличивать, сила тяжести будет расти быстрее, чем давление вырожденного электронного газа. Поэтому размер звезды уменьшится, а значит — плотность и давление возрастут. Когда плотность достигнет 100 тысяч т/см3, начнется процесс нейтронизации вещества. Электроны движутся так быстро, величина их Ферми-энергии оказывается такой большой, что электроны обретают способность пробить потенциальный барьер сил отталкивания и соединиться с протоном. Из слившихся протона и электрона возникает нейтрон. Если после этой реакции остается какой-то излишек энергии, его уносит нейтрино. Этот процесс и называется нейтронизацией вещества.

Почему реакция идет лишь при очень высоких плотностях? Дело в том, что нейтрон на 0,14 % массивнее протона. Значит, чтобы из протона мог образоваться нейтрон, протон должен получить дополнительную массу-энергию. Откуда эта энергия берется? Ее приносит электрон. Но откуда взяться такой энергии у электрона — ведь он «легче» протона почти в 1840 раз, его масса составляет лишь около 0,05 % массы протона. Вот если бы массу электрона увеличить втрое… Это можно сделать — нужно разогнать электрон до субсветовой скорости. Быстрые электроны существуют в вырожденном электронном

газе, сжатом до плотности, в 100 тысяч раз большей, чем плотность обычного белого карлика. Только в этом случае электрон может столкнуться с протоном, захватиться им, и тогда вместо двух частиц — протона и электрона — возникают две другие — нейтрон и нейтрино. Если звезду сжать еще сильнее, то энергия электронов может стать больше предела, необходимого для нейтронизации. Избыток энергии уносят возникающие при нейтронизации нейтрино. Очевидно, что чем больше избыток энергии у электронов, тем большую энергию уносит каждое нейтрино.

Уже при плотности 100 миллионов т/см3 большая часть электронов захватывается, большая часть протонов превращается в нейтроны — возникает нейтронная звезда. А если звезду сжать еще сильнее? Тогда энергии электронов хватит не только для образования нейтронов, но даже для рождения более тяжелых частиц — гиперонов. Плотность вещества звезды максимальна в ее центре, значит, и гипероны начинают появляться сначала именно в центральных областях нейтронной звезды. По мере дальнейшего сжатия звезды гиперонное ядро увеличивается. Казалось бы, если продолжать сжимать звезду, увеличивая ее массу, настанет момент, когда «гиперонная опухоль» захватит все тело звезды. Но этого не происходит, и вот почему. Едва в звезде возникает небольшое гиперонное ядро, устойчивость звезды теряется окончательно и бесповоротно. Сила тяжести увеличивается настолько (ведь сжатие звезды происходит из-за увеличения ее массы), что никакое давление не может ему противостоять. Катастрофический коллапс наступает, прежде чем «гиперонная опухоль» успевает сколько-нибудь разрастись.

Итак, в начале шестидесятых годов почти все современные теоретические представления о сверхплотных звездах уже сложились. Во-первых, стало ясно, что никакая статическая сверхплотная звезда не может быть массивнее, чем примерно две массы Солнца. Во-вторых, стало ясно, что нейтронная звезда вовсе не является шариком из нейтронов. Структура ее сложнее. В центре — небольшое ядро, состоящее из гиперонов. Плотность ядра выше, чем миллиард тонн в кубическом сантиметре! Основную долю массы звезды составляет нейтронная жидкость, обладающая, как показали дальнейшие исследования, весьма необычными свойствами. Например, она сверхтекуча. Вот парадокс! На Земле с трудом удается получить сверхтекучие жидкости — приходится охлаждать вещество почти до абсолютного нуля, до минус 273 градусов Цельсия. А в недрах нейтронной звезды температура достигает сотен тысяч или миллионов градусов, и все же нейтронная звезда сверхтекуча. Это естественно — при сверхвысокой плотности сотня тысяч градусов все равно что нуль…

Ближе к поверхности звезды в нейтронной жидкости появляется примесь из ядер железа и вырожденного электронного газа. Эта область похожа по своей структуре на белый карлик, там и плотность такая же, около тонны в кубическом сантиметре. А еще выше, у самой поверхности, тоненькая твердая кора из обычного невырожденного вещества. Толщина коры ничтожна — всего несколько сантиметров! Вот что такое нейтронная звезда, если описать ее языком теоретиков.

Но для того чтобы опознать нейтронную звезду по этим признакам, нужно ее вскрыть и заглянуть внутрь. Для астронома-наблюдателя важны внешние признаки. Теория давала и их. Если температура на поверхности нейтронной звезды превышает миллион градусов, то такая звезда должна быть источником рентгеновского излучения.

Рентгеновское излучение из космоса действительно было обнаружено. Вскоре после второй мировой войны в небо поднялись первые мирные ракеты с гейгеровскими счетчиками на борту. Они изучали рентгеновское излучение Солнца. Пятнадцать лет велись такие исследования, но никто не предполагал, что на небе, кроме Солнца, могут быть и другие источники рентгеновского излучения. Это естественно. Солнце лишь миллионную долю своего полного излучения отдает в рентгеновский диапазон. Приборы были способны обнаружить рентгеновский поток от Солнца только потому, что до Солнца «рукой подать». Ближайшая звезда в сотни тысяч раз дальше от Земли, чем Солнце. Рентгеновский поток слабее в миллиарды раз. Все понимали, что нет никакой возможности такое излучение обнаружить.

Поделиться:
Популярные книги

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Страж Кодекса. Книга V

Романов Илья Николаевич
5. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга V

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4

Волков. Гимназия №6

Пылаев Валерий
1. Волков
Фантастика:
попаданцы
альтернативная история
аниме
7.00
рейтинг книги
Волков. Гимназия №6

Лэрн. На улицах

Кронос Александр
1. Лэрн
Фантастика:
фэнтези
5.40
рейтинг книги
Лэрн. На улицах

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2

Купи мне маму!

Ильина Настя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Купи мне маму!

Шаман. Похищенные

Калбазов Константин Георгиевич
1. Шаман
Фантастика:
боевая фантастика
попаданцы
6.44
рейтинг книги
Шаман. Похищенные

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II