Загадки для знатоков. История открытия и исследования пульсаров
Шрифт:
Описанный метод поиска нейтронных звезд и черных дыр в двойных системах был предложен советскими учеными Я. Б. Зельдовичем и О. X. Гусейновым в 1965 году. В том же году Я. Б. Зельдович и И. Д. Новиков сделали еще одно интересное заключение. Представьте опять двойную систему, состоящую из обычной и сверхплотной звезд. Обычные звезды теряют свое вещество — существует, например, звездный ветер, как у Солнца. Но Солнце «худеет» очень медленно. В двойной системе звезда способна терять вещество значительно быстрее. Это вещество — точнее, его часть — захватывается полем тяжести сверхплотной звезды. Такой процесс эффективнее процесса аккреции межзвездного газа. Значит, нейтронная звезда или черная дыра в двойной системе могут стать рентгеновскими источниками большой яркости!
Итак, вот уже несколько способов обнаружения нейтронных звезд. Первый — горячие нейтронные звезды. Второй — нейтронные звезды, заглатывающие межзвездный газ. Третий — нейтронные
Добавим еще один способ. В 1964 году Я. Б. Зельдович и О. X. Гусейнов обратили внимание на то, что в момент смерти звезды, когда идет процесс коллапса, когда из протонов и электронов рождаются нейтроны, в пространство уходит мощный импульс нейтринного излучения.
Одно время бытовало мнение, что когда умирает человек, мозг его испускает последний сигнал, символизирующий смерть, — мощный всплеск мозгового излучения неизвестной природы. Этот гипотетический сигнал был назван некробиотическим. Существует ли в действительности некробиотическое излучение мозга — никто не знает. Вероятнее всего, что нет. Но вот, когда умирает звезда, когда коллапс сжимает ее тело, когда вещество в агонии валится к центру, — в этот смертный миг звезда испускает «некробиотический» сигнал, который можно уловить приборами на огромных расстояниях. Процесс нейтронизации длится доли секунды — столько же продолжается и всплеск нейтринного излучения. Зафиксировать такой всплеск на Земле очень трудно, но это трудности технического характера. Нужны мощные нейтринные ловушки. Нужно и изрядное везение — всплеск длится мгновение, и неизвестно, когда его ждать…
Ежегодно астрономы обнаруживают несколько вспышек сверхновых — несколько звездных смертей. Но все эти трагедии происходят в далеких галактиках, на таких больших расстояниях от Солнца, что никакие из современных нейтринных ловушек не способны уловить импульс. Единственный пока раз — в феврале 1987 года — астрономам повезло. 23 февраля в соседней карликовой галактике — Большом Магеллановом Облаке — умерла звезда. Произошло это в 7 часов 35 минут 35 секунд мирового времени. Именно тогда две группы нейтринных детекторов — одна в Камиока (Япония), другая вблизи от Кливленда (США) — зарегистрировали неожиданный всплеск нейтрино. В течение 13 секунд приборы отметили «прибытие» 11 нейтрино (точнее — антинейтрино). А вскоре, несколько часов спустя, и наблюдатели-оптики заметили на небе нечто неладное: в Большом Магеллановом Облаке появилась и начала ярко разгораться сверхновая. Впервые в истории астрономии люди уловили «некробиотический» сигнал звезды…
Мы так и не вырвались из плена общепринятого представления о том, что нейтронная звезда — мертвое тело. Методы поиска, о которых шла речь, связаны с проявлением поля тяжести нейтронной звезды, но не с ее внутренней активностью. Исключение — всплеск нейтринного излучения, но длится он недолго и возникает до образования нейтронной звезды, в процессе катастрофического коллапса. Потерпев временную неудачу с тепловым излучением нейтронной звезды, теоретики бросили все силы на поиск внешних источников энергии. Воображение буксовало — ведь все, кто занимался проблемой поиска нейтронных звезд, были первоклассными специалистами.
Это парадоксально, но противоречия в сказанном нет. Специалисту труднее преодолеть психологичен скую инерцию, связанную с господствующей точкой зрения. Чтобы быть храбрым, нужно либо усилием воли преодолеть страх, либо просто не знать, что впереди опасность. Все, кто занимался теорией нейтронных звезд, знали, что в этих звездах нет источников энергии. Вот это знание и служило тормозом для воображения…
Психологи и специалисты по теории творчества давно ищут способы активизации воображения. Мы уже говорили о мозговом штурме, синектике — это так называемые неалгоритмические методы. Они были созданы и использовались для решения изобретательских задач, но эффективнее их можно применять для развития творческого воображения. Тренировать фантазию нужно постоянно, иначе она «скукливается», и потом ее все труднее пустить в свободный полет. Психологи установили, что самым богатым воображением обладают дети. Но багажа знаний у них нет, и им не к чему свое воображение приложить — только к игре. А без приложения фантазия начинает сдавать, к тринадцати годам воображение уже катится по наклонной плоскости, да так и катится по ней… всю жизнь. Недаром в тех областях, где нужно особенно богатое воображение, — в математике, теоретической физике — наивысшие творческие достижения приходятся на возраст 25–30 лет. Потом начинается творческий спад. Вот если бы воображение тренировали с детства, если бы его приемам учили в вузах, если бы в научно-исследовательских институтах ввели курсы упражнений по развитию творческой фантазии!..
Вы, возможно, читали фантастический рассказ Р. Джоунса «Уровень шума»? Это рассказ о роли творческого воображения.
«Мы постоянно взрослеем, и по мере того, как мы учимся в школе
Ученым — персонажам рассказа — предлагают создать антигравитационный двигатель. Все знают, что это невозможно, и естественно, работа стоит на нуле. Совсем как в нашем случае — все знают, что нейтронные звезды мертвы, и потому не могут придумать ничего иного. В рассказе Р. Джоунса ученым показывают фильм об испытаниях реальной антигравитационной машины, приводят в дом, где жил погибший во время испытаний изобретатель. Ученых ставят перед фактом — антигравитация есть. Под давлением факта стена инерции падает, и за несколько дней ученый — герой рассказа — создает основы теории антигравитации. Новый двигатель сконструирован. Вот, что такое психологическая инерция! Если бы и в нашем случае удалось поставить астрофизиков перед фактом — нейтронные звезды не мертвы, то как развивались бы события?
Ученые любят фантастику. Чтение фантастики тренирует воображение. Фантасты в большинстве своем дилетанты в науке, но профессиональные выдумщики. Годами тренированное воображение помогает им при минимуме знаний в той или иной науке иногда предлагать интересные научные идеи. Сами ученые не любят в этом признаваться — это, по их мнению, ущемляет профессиональную гордость. Но факт есть факт. Жюль Верн, Герберт Уэллс, Александр Беляев, Иван Ефремов придумали не меньше нового в науке, чем хороший научно-исследовательский институт. Им помогало воображение.
Лет тридцать назад говорили: фантасты опережают науку. Сейчас принято говорить: фантастам за учеными не угнаться, наука слишком сложна, дилетантам не понять ее глубин, а значит, и предсказать в науке они ничего не могут. В пример приводят многочисленные несбывшиеся прогнозы. Есть и такие, конечно. Но фантастика ценна не столько тем, что прямо указывает ученым, что им делать, сколько тем, что исподволь учит думать раскованно, развивает фантазию.
Кстати, в самом утверждении «фантасты ошибаются чаще ученых» тоже есть существенная доля психологической инерции. Видимая строгость научных предположений заставляет забывать о том, что подавляющей их части суждено сгинуть без всякого следа. В науке (как и в фантастике!) выживают жизнеспособные идеи. Разница в том, что фантастическое произведение, если оно хорошо написано, если в нем есть характеры и интересные сюжетные находки, может долго волновать читателя и служить дотошным критикам примером того, как ошибаются фантасты. Ошибочная же научная идея живет не дольше того момента, когда ее сменяет другая идея, более близкая к истине. Разве мало ошибочных научных идей мы уже встретили в нашем расследовании гибели звезд? Вот и получается, что об ошибочной научной идее чаще всего забывают, об ошибочной идее фантаста помнят долго.
Можно привести в пример книгу замечательного английского астрофизика А. Эддингтона «Внутреннее строение звезд», опубликованную в тридцатых годах. А. Эддингтон был одним из первых, кто указал на ядерные источники энергии звезд. Начинал же он практически с нуля. Не удивительно поэтому, что в книге А. Эддингтона среди десятка научных идей, давно преданных забвению из-за их неверности, оказались несколько идей и решений, которые были близки к истине — потому и дожили до наших дней. Польский фантаст С. Лем в своей статье «Космология и научная фантастика», опубликованной в 1977 году, назвал книгу А. Эддингтона научно-фантастической. Приведем для примера лишь одну идею: звезды теряют массу в ходе эволюции. Вот ход рассуждений ученого. Звезды эволюционируют от состояния горячего массивного гиганта до состояния немассивного красного карлика — таким было представление об эволюции звезд в первой трети нашего века (ошибочное представление!). Но раз звезды рождаются массивными, а умирают немассивными, значит, они в течение жизни теряют массу. Логично? Вполне. Как же они теряют массу? Единственный способ взаимодействия звезды с окружающей средой — излучение (еще одна ошибочная идея!). Значит, звезды теряют массу посредством излучения, согласно знаменитой формуле Е = Мс2. Логично? Да. Но верно лишь в той части утверждения, где говорится, что звезды теряют массу.
Это утверждение справедливо и сейчас, но вот причина потерь массы и следствия из этого совершенно иные! Теперь представим себе писателя-фантаста, который на заре тридцатых годов, вдохновленный идеей А. Эддингтона, написал бы рассказ о том, как «худеет» звезда, о возможной человеческой трагедии, связанной с этим фактом. Будучи хорошо написанным, рассказ читался бы и сейчас, служа примером ошибочности идей фантаста…
Вернемся к одной из главных функций фантастической литературы — развитию творческого воображения. Не так уж много существует в мире методик по развитию воображения, и в большей своей части методики эти — следствие изучения фантастических идей.