Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Ученые ограничились выводом: имеются хорошо выраженные бароклинные возмущения течений с горизонтальным масштабом около 250 км. Вихри открытого океана еще не были открыты…

А теперь с уверенностью можно сказать: это был крупный вихрь Индийского океана, диаметром в подводной части (на глубине 150 м) около 250 км.

Синоптические вихри. В феврале — сентябре 1970 г. под руководством академика Л. М. Бреховских была проведена экспедиция «Полигон-70». Основной ее задачей было исследование течений в типичном районе открытого океана, т. е. вдали от берегов и фронтальных областей. Эксперимент проводился в южной части Северного пассатного течения Атлантического океана с глубинами от 5000 до 5500 м.

На этом полигоне использовались буквопечатающие гидрометрические

измерители скорости течения типа БПВ-2 (конструкции ленинградского специалиста Ю. К. Алексеева), попросту называемые вертушками. На этот раз применили новую методику их использования: в исследуемом районе океана было поставлено одновременно около двухсот вертушек в точках, расположенных по лучам прямоугольного креста. Подобная расстановка измерителей скорости позволила охватить наиболее широкий спектр частот возможных колебаний скорости течения. Каждый луч имел длину 100 км. Центр располагался на 16°30' с. ш. и 33°30' з. д. В каждом луче по 4 буя с вертушками и один общий буй в центре, всего 17 буев. На рисунке на с. 21 дана схема расположения измерителей БПВ-2. На тросах, привязанных к каждому бую, размещалось по 10 вертушек на глубинах от 25 до 1500 м. Одновременно использовались и автономные регистраторы температуры воды.

Схема главного антициклона на «Полигоне-70». Эллипсы — линии тока в поле течений вихря, прямые линии — в поле волны, L — длина волны, а — расстояние от центра вихря до струи с максимальной скоростью, с — скорость поступательного движения вихря, сw — фазовая скорость волны; х, у — прямоугольные координаты/

Почти полгода работали научно — исследовательские суда Института океанологии на этом относительно небольшом квадрате в океане: следили за сохранностью буев, проверяли их расположение, перезаряжали или сменяли вертушки, выполняли общую гидрологическую съемку. Чтобы обнаружить вихри и проследить их перемещение по океану, необходимо было достаточно долго вести непрерывные измерения на выбранной акватории. Вертушки простояли на полигоне почти шесть месяцев. Потом их записи скорости и направления течений были обработаны на ЭВМ. В результате был надежно зафиксирован великолепно выраженный антициклонический вихрь (это вращение воды по часовой стрелке для северного полушария), проходивший через район полигона в направлении на запад — юго — запад с начала апреля по начало июля 1970 г. Этот вихрь был назван Главным вихрем.

Одновременно была зарегистрирована задняя часть еще одного антициклонического вихря, который двигался впереди Главного вихря. Вихри шли почти вплотную один за другим.

Главный вихрь имел форму эллипса с отношением осей примерно 1:2. Малая полуось вихря была размером около 100 км; она определялась как расстояние от центра вихря до точек с максимальной орбитальной скоростью на периферии вихря (расстояние «а» на рисунке на с. 21). Средняя скорость движения его центра за время апрель — июль 1970 г. была 5,5 см/с. А наибольшая орбитальная скорость движения воды на периферии вихря достигала 35 см/с на глубинах 400–600 м.

Подобные вихри получили название синоптических. Синоптическими в метеорологии называются изменения с периодом от нескольких суток до нескольких месяцев. С открытием вихрей в океане этот термин прочно вошел в океанологию.

Механизм образования вихрей. Самое интересное заключается в том, что океанский вихрь оказался волной Россби. К такому выводу пришел доктор физико — математических наук М. Н. Кошляков после тщательного изучения результатов работы на «Полигоне-70».

На рисунке на с. 21 приведена схема Главного вихря. Буквой L обозначена длина волны. Подсчет по известной формуле Россби дал значение размеров вихря, довольно близко совпавшее с экспериментальными данными.

Сегодня синоптические вихри открытого океана рассматриваются доктором физико — математических наук М. Н. Кошляковым

и другими учеными как сложный синтез волн Россби и крупномасштабной турбулентности. Каждый вихрь — своеобразный комплекс из высокоорганизованного физического процесса (волна Россби) плюс чисто случайное турбулентное завихрение большого масштаба. Процент турбулентной "примеси" может сильно колебаться от вихря к вихрю. В этом заключается одна из трудностей изучения и прогнозирования вихрей открытого океана.

Вихри синоптического масштаба раньше были известны только в атмосфере. Океанологи не сразу признали факт образования их в океане. Ныне это больше не вызывает сомнений. Вихри образуются благодаря бароклинной неустойчивости крупномасштабных течений.

Сообщение советских ученых о перемещающихся в океане громадных вихрях вызвало интерес у ученых — океанологов во всем мире. В 1973 г. американские ученые на своем полигоне в Саргассовом море в расширенном масштабе повторили измерения и подтвердили результаты советских исследователей. Американский эксперимент получил название «Моде-1».

В 1974 г. на новом полигоне в районе Субарктического фронта в северо — западной части Тихого океана советские ученые, работавшие на научно — исследовательских судах «Витязь» и «Дмитрий Менделеев», открыли еще один вихрь. Он — самый большой, овальной формы, размер его по большой оси около 150 миль (1 морская миля = 1852 км), скорость течения на его периферии достигла 100 см/с. Вихрь проникал на глубину до 3000 м.

В юго — западной части Саргассова моря с июля 1977 г. по сентябрь 1978 г. была проведена совместная советско — американская экспедиция под условным названием «Полимоде». В ней участвовали 10 научно — исследовательских судов. Основой эксперимента были 19 буйковых станций Института океанологии, которые располагались в узлах сетки из равносторонних треугольников. Центр сетки находился на 29° с. ш., 70° з. д., расстояние между станциями — 72,7 км. На этом полигоне было найдено много разных вихрей. Особенно сильные вихри (гидрофизики называют их бароклинными) были сосредоточены в слое главного термоклина или выше его. Скорость течения в них достигала 70–80 см/с на горизонтах 100 и 400 м, что значительно выше средней скорости течения в обследованном районе Саргассова моря.

Столкновение вихрей. На полигоне «Полимоде» впервые была получена информация о поведении вихрей при встрече друг с другом. В начале апреля в южную часть полигона вошел крупный вихрь с востока, а в конце апреля в северо — западную часть вторгся с севера такой же сильный вихрь. В начале мая произошло резкое сближение, сопровождавшееся их частичным слиянием. В результате в тылу возникла сильная струя воды юго — восточного направления, плотность кинетической энергии которой возросла в 12 раз. Эффект невиданной концентрации энергии был прослежен в верхнем слое океана толщиной 1000 м.

Синоптические вихри несут громадные количества энергии. Например, в конце февраля в северо — западном углу полигона сформировался вихрь, полная кинетическая энергия которого в слое от 0 до 1400 м глубины была оценена в 17–1014 Дж!

Вихри — энергоемкие образования. Они могут оказывать влияние на изменение погоды. В этой связи необходимо учитывать разность температур воды в вихре и в окружающем океане.

Изучение вихрей из космоса. 1 сентября 1977 г. со спутника с помощью инфракрасного радиометра был обнаружен только что образовавшийся антициклонический вихрь. Температура воды в нем была на 11 °C выше температуры воды окружающего океана. Наибольший размер вихря достигал 185 км. За 5 месяцев он прошел не менее 360 миль со средней скоростью 4,5 км/сутки. Во время этого перехода он охлаждался: разность температуры между его водами и океаном упала до 3–4 °C. Одновременно несколько сократился максимальный размер вихря — до 148 км. Зато глубина перемешанного слоя воды увеличилась с 50 до 100 м. За одну неделю, во время которой над ним прошли два шторма, верхний слой воды вихря толщиной 200 м охладился на 1 °C. Расчет показал отдачу энергии поверхностью вихря в атмосферу, равную 1357 Вт/м2.

Поделиться:
Популярные книги

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота