Чтение онлайн

на главную - закладки

Жанры

Жар холодных числ и пафос бесстрастной логики
Шрифт:

54

22. При другом подходе булевой алгеброй для логической интерпретации нашего аппарата можно считать множество форм высказываний (рассматриваемых с точностью до отождествления равносильных форм) вместе с заданными на них операциями ~, &. V - такая булева алгебра высказываний оказывается алгеброй Линденбаума — Тарского, о которой см.: Е. Расёва, Р. Сикорскии. Математика метаматематики. М., 1972, с. 282 и далее.

55

23. Заметим, что булеву алгебру можно сформулировать и на основе отношения <= (или >=). См: X. Б. Карри. Основания

математической логики. М., 1969.

56

24. Для этого имеются и другие причины. Дело в том, что в алгебре логики Буля можно определить операцию дизъюнкции, и тогда все равенства, верные в логике высказываний как булевой алгебре, будут верными и в теории Буля; с другой стороны, в рассмотренной нами теории можно определить строгую дизъюнкцию (например, так:

(А V B)((A & ~В) V (~А & В)), и тогда теория Буля может быть пред. ставлена как теория булевой алгебры (в узком смысле).

57

25. Понятие формы класса (классовой формы) следует понимать по аналогии с понятием «форма высказывания».

57

26. Ср. примечание 14.

58

27. Заметим, что при проверке схем аксиом, в каждой из которых фигурирует по две формы классов, следует учитывать возможные отношения между двумя произвольными классами а и . Таких отношений может быть пять: классы а и совпадают; класс а полностью входит в класс , причем в имеются элементы, не принадлежащие а; то же отношение, но с заменой а на и наоборот; классы а и имеют общие элементы, причем в а есть элементы, не принадлежащие классу , и в есть элементы, не принадлежащие а; классы а и не имеют общих элементов. Эти отношения можно передать следующими схемами (рис. 7). Проверяя равенство, нужно убедиться в его справедливости при каждом из этих отношений.

59

28. Абстрактное понятие булевой алгебры есть достижение середины нашего века, в то время как его спецификации — на классах и высказываниях — восходят к логикам прошлого века. Применению аппарата булевой алгебры к исследованию релейно-контактных схем начало положили в 1935—1938 гг. В. И. Шестаков, А. Никасима и К. Шеннон, один из создателей кибернетики (см. его статью «Символический анализ релейных и переключательных схем», в русском переводе опубликованную в кн.: К. Шеннон. Работы по теории информации и кибернетике. М., 1963). «Приоритет в применении аппарата математической логики к вопросам электротехники (связанным с построением релейно-контактных схем), — отмечает С. А. Яновская, принадлежит... В. И. Шестакову, работа которого «Алгебра релейно-контактных схем»... написанная еще в январе 1935г., к сожалению, не была своевременно опубликована, хотя и легла в основу его кандидатской диссертации» (Послесловие редакции в кн: А. Тарекии. Введение в логику и методологию дедуктивных наук. М., 1948. с. 320).

60

1. Эти — и другие — высказывания выдающихся мыслителей о математике см. в кн.: Е. Т. Веll. Men of Mathematics. N. Y. 1962, XV—XVII.

61

2. См. об этом в кн.: В. Н. Молодший. Очерки по философским вопросам математики. М., 1969, ч. II, гл. 2.

62

3. Конечную дробь, то есть (периодическую) дробь с «хвостом» из одних нулей (например, 3,14000...) при этом заменяют

бесконечной периодической дробью с девяткой в периоде (в нашем примере— дробью 3,13999...).

63

4. Если действительное число есть рациональное число, то есть если десятичная дробь является периодической, то с бесконечностью можно «справиться» тривиальным способом, рассматривая число как дробь p/q, где p и q — целые числа, а q отлично от нуля.

64

5. E. Т. Веll. Men of Mathematics. N. Y., 1962. p. 431.

65

6. С теорией Дедекинда можно подробнее познакомиться по изложению автора. См.: Р. Дедекинд. Что такое числа и для чего они служат. Казань, 1905.

7. См. Г.М. Фихтенгольц. Основы математического анализа. Т. 1. М., 1960, с. 17.

66

8. Априори возможен еще случай, когда в левом классе есть наибольшее число, а в правом — наименьшее. Однако нетрудно показать, что такой случай противоречит свойствам сечения.

67

9. См. об этом подробнее в кн. В. Н. Молодшего, указанной в примечании 2.

68

10. Б. Рассел. История западной философии. М., 1959, с. 56.

69

11. Цитируется по кн.: Н. Бурбаки. Очерки по истории математики. М., 1963. с. 29.

70

12. См. об этом в кн.: История математики. Т. 1. М., 1970, с. 292 и далее.

71

13. См. статью Л. Кальмара, указанную в примечании 13 к гл.1, е.188,

72

14. С основными идеями Г. Кантора можно ознакомиться по трем его работам, имеющимся в русском переводе (опубликованы в издании:

Новые идеи в математике. Вып. 6. Спб, 1914).

73

15. С. К. Клини. Введение в метаматематику. М., 1957, с. 14.

74

16. Этот результат был в определенном смысле обобщением следующего свойства конечных множеств. Пусть дано, скажем, множество из трех элементов М = {а, b, с}. Помимо пустого множества, по определению входящего во всякое множество, и самого множества M, входящего в самое себя, в нем содержатся следующие подмножества: {а}, {b}, {с} {а, b}, {а, с}, {b, с}; таким образом, множество всех подмножеств множества из трех элементов содержит 8, или 23 элементов. Легко доказать, что если исходное множество содержит n элементов, то множество всех его подмножеств будет содержать 2n элементов. Поэтому в случае конечных множеств количественное превосходство производного множества над исходным очевидно. Но когда речь идет о бесконечных множествах, вопрос становится не таким просты»: Кантор доказал, что и в этом случае производное множество превзойдет исходное; правда, здесь уже нельзя будет сказать, что в нем окажется больше элементов — и там и там их бесконечно много, а следует говорить, что оно обладает большей мощностью. Термин «мощность» Кантор определил математически строго. См. гл. I книги С. К. Клини, указанной в примечании 15.

Поделиться:
Популярные книги

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Вадбольский

Никитин Юрий Александрович
1. Вадбольский
Фантастика:
попаданцы
5.00
рейтинг книги
Вадбольский

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Закон ученого

Силлов Дмитрий Олегович
Снайпер
Фантастика:
героическая фантастика
боевая фантастика
5.00
рейтинг книги
Закон ученого

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Вор (Журналист-2)

Константинов Андрей Дмитриевич
4. Бандитский Петербург
Детективы:
боевики
8.06
рейтинг книги
Вор (Журналист-2)