Жар холодных числ и пафос бесстрастной логики
Шрифт:
95
5. Цитируется по кн.: E.W. Beth. The Foundations of Mathematics. A Study in the Philosophy of Science. Amsterdam, 1965. p. 618—619.
96
6. Р. Декарт. Избранные произведения, с. 86.
97
7. См., например: Ж. Пиаже. Избранные психологические труды. [М.], 1959.
98
8.
98
9. При интуиционистской — не связанной с понятием алгоритма — трактовке конструктивности.
99
10. Мы набросали лишь идею доказательства. Точную формулировку теоремы и полное ее доказательство можно найти, скажем, в кн.:
Г.М. Фихтенгольц. Основы математического анализа. Т. I. М.. 1960, с. 105—106.
100
11. См. Д. Гильберт. Основания геометрии. М.— Л., 1948.
101
12. И вступил по этому поводу в полемику с Гильбертом (переписка Фреге и Гильберта по данному вопросу опубликована в «Sitzungsberichte der Heidelberger Akademie der Wissenschaften.». Jahrgang 1940, 6. Abhandlung, Heidelberg, 1940; 1941, 2. Abhandlung, Heidelberg, 1941).
102
13. Гильберт говорит: «с применением метода идеальных элементов связано одно условие, одно единственное, но необходимое, это доказательство непротиворечивости. Именно, расширение посредством пуюбщения идеальных элементов дозволено только в том случае, когда при этом в старой, более узкой области не-возникает никаких противоречий, то есть если соотношения, которые выявляются для старых образов при исключении идеальных образов, всегда остаются справедливыми в этой старой области» (Д. Гильберт. Обоснования математики. Добавление IX в его книге «Основания геометрии», с. 376).
103
14. Д. Гильберт. О бесконечном. Добавление VIII в его книге «Основания геометрии», с. 350.
104
15. См.: Проблемы Гильберта. М., 1969, с. 22.
105
16. Д. Гильберт. О бесконечном. Добавление VIII в его книге «Основания геометрии», с. 351.
106
17. Д. Гильберт. Обоснования математики. Добавление IX в его книге «Основания геометрии», с. 381—382. Под «реальными высказываниями» Гильберт имеет в виду высказывания, не содержащие «идеальных элементов».
107
18.
108
19. Оно, правда, представляет собой сведение к абсурду, но в такой его форме, которая приемлема даже для Брауэра: ни закон исключенного третьего, ни закон снятия двойного отрицания (также отвергаемый интуиционистами) здесь не используется.
109
20. Этот доклад составляет добавление IX в книге «Основания геометрии».
110
21. П. С. Новиков. Элементы математической логики. М.» 1959, с. 36.
111
1. О содержании этой работы Гёделя можно подробнее прочесть в кн.: Э. М. Чудинов. Теория относительности и философия. М.. 1974, с. 232 и далее.
112
2. K. Godel. Uber formal unentscheidbare Satze der Principia Mathematica und vervandter Systeme.
– — «Monatchefter fur Mathematik und Physik» Bd 38, 1931.
113
3. Понятие тождественной истинности, которое в гл. 3 было нами разъяснено в применении к формам высказываний, трактуемым на уровне логики высказываний (алгебры логики), естественным образом распространяется на классическую логику предикатов и строящиеся на ее основе логико-математические системы. Поскольку, однако, мы не можем здесь рассказать, как происходит такое распространение, мы будем вместо «тождественной истинности» употреблять более общее (хотя и менее определенное) понятие «содержательной истинности» (истинности по смыслу).
114
4. Заметим, что если из доказуемости (или истинности) некоторой формулы (высказывания) следует ее недоказуемость, то это не означает еще формально-логического противоречия. Таковое будет иметь место, если, кроме этого, из недоказуемости будет следовать доказуемость.
115
5. Отметим, что в своей теореме Гёдель использовал более сильное условие, чем «обычная» непротиворечивость, смысл которой был кратко пояснен в главе 5, с. 120—121. Однако впоследствии было показано, что для его теоремы достаточно и «обычной» непротиворечивости.