Живой кристалл
Шрифт:
Отвлечемся от того чувства разочарования, которое, видимо, испытывал Дюлонг (Пти ушел из жизни вскоре после открытия закона). Закроем пока глаза на «низкотемпературную» правду и тщательнее вдумаемся в открытие французских физиков: «низкотемпературная» правда не отменяет справедливости закона Дюлонга и Пти в области высоких температур, где закон может быть использован для уточнения характеристик теплового движения атомов.
Из закона Дюлонга и Пти, разумеется применительно к той области температур, где он подтверждается экспериментально, следует, что, участвуя в тепловом движении, атомы в узлах решетки колеблются подобно обычным маятникам. До сих пор мы довольствовались лишь знанием энергии этих колебаний. А теперь построим элементарную
Немного упростим модель кристалла. Пусть атомы, окружающие данный «одиночный» атом, колебаний не совершают, а лишь, взаимодействуя с колеблющимся, определяют силы притяжения и отталкивания, которые действуют на него в соответствии с потенциалом взаимодействия между ним и окружающими атомами. И еще больше упростим реальную ситуацию, допустив, что атом совершает колебания лишь вдоль определенной прямой, а не во всех трех направлениях в пространстве. В рамках такой модели естественно атом, колеблющийся в узле решетки, мысленно заменить грузиком, колеблющимся на пружинке: грузик — атом, пружинка — упругое окружение. К помощи пружинки мы недавно уже прибегали.
Не увели ли нас предположения и упрощения далеко в сторону от тех реальных условий, в которых колеблется реальный атом в узле реальной кристаллической решетки? Кажется, не увели. Пружинка удачно моделирует наличие силы притяжения (когда она растянута) и силы отталкивания (когда она сжата). Грузик хорошо моделирует атом, так как в нашей задаче, если силы заданы, от атома требуется лишь иметь определенную массу, а грузик ее имеет. А то, что в избранной модели колебания происходят вдоль прямой, существа дела практически не искажает, так как более сложное колебание можно представить в виде суммы прямолинейных, — этой возможностью мы уже пользовались, когда, объясняя открытие Дюлонга и Пти, предполагали, что каждый из атомов участвует в трех прямолинейных колебаниях.
Определим вначале амплитуду колебаний атома. Потенциальная энергия Wп колеблющегося грузика, очевидно, не должна зависеть от того, смещается он влево или вправо от своего среднего положения, когда пружина и не сжата, и не растянута. А это означает, что
где — постоянная величина, характеризующая упругие свойства пружины. Эта величина определяет силу, действующую на грузик со стороны пружины: F = — х.
При максимальном отклонении колеблющегося атома от положения равновесия, т. е. при отклонении на величину амплитуды колебаний А, как мы уже знаем, вся энергия атома kТ будет запасена в виде потенциальной энергии. Это означает, что
A2/ 2 = kT
и, следовательно,
A = (2kT / )1/2
Полученная формула неприятна тем, что в нее входит неизвестная нам величина . Впрочем, ее нетрудно связать с известными характеристиками кристалла. Для этого левую и правую части формулы, которая определяет силу F, поделим на а2, где а —
F/а2 = – /а . x/а
Легко усмотреть, что F/a2 — напряжение, действующее на атом,х/а — относительное смещение атома. Если оно невелико, последняя формула просто является записью закона Гука, а отношение /а имеет смысл модуля упругости Е. Итак, = Еа , а амплитуда
A = (2kT/Ea)1/2 T1/2
Из нашего расчета следует, что амплитуда колебаний атома с температурой возрастает по закону T1/2. У металлов, для которых Е 1012 дин/см2, а 3• 10– 8 см, в области предплавильных температур амплитуда А 2.10– 9 см и, следовательно, составляет несколько процентов от величины межатомного расстояния. Много это или мало? Конечно же, немного, если иметь в виду сохранение решетки как таковой, если заботиться о том, чтобы тепловые колебания не расшатали кристалл, лишив его порядка в расположении атомов. При найденной нами амплитуде колебаний атомов кристалл сохраняет свою индивидуальность, еще не теряет «черты кристалла».
Определим теперь период колебаний атома. Если иметь в виду лишь приближенную оценку, то сделать это совсем несложно. Когда вся тепловая энергия колеблющегося атома преобразована в его кинетическую энергию, атом движется с максимальной скоростью, которая следует из условия
Мы сделали грубое предположение, сочтя, что на протяжении всего периода колебаний атом движется с максимальной скоростью. Как выясняется, оно привело нас к потере численного множителя 2. Точная формула выглядит так:
Мы получили результат, противоречащий интуиции: кажется странным, что период колебаний атома в решетке практически не зависит от температуры, разве что лишь в меру очень слабой температурной зависимости модуля упругости. Здесь следует подчеркнуть: не при всех температурах, а лишь при высоких температурах, когда вообще справедливо все то, что рассказано в очерке. Так как масса атома
m 10– 22 грамм, то 0 = 10– 13– 10– 12 с