Живой кристалл
Шрифт:
Итак, один из непременных признаков жизни кристалла — нулевые колебания составляющих его атомов. Нам, живущим в мире «нормальных условий» и «классических» проявлений законов природы, легко воспринять факт существования тепловых колебаний: более высокая температура — колебания активнее, при определенной температуре колебания могут стать настолько активными, что кристалл будет вынужден расплавиться. Тепловые колебания — еще со школьных лет явление настолько привычное, что кажется понятным и тогда, когда истинного понимания нет. Привычное, как правило, не вызывает вопросов, а, следовательно, молчаливо предполагается понятным. А вот нулевые колебания — за пределами привычного. Приблизимся к ним, попытаемся освоиться с ними, оценить величины, которые характеризуют этот вид колебаний.
Вначале о частоте нулевых колебаний. Здесь все ясно: она та же, что и при тепловых колебаниях. Иной она
0= 1/0 (аЕ/т)1/2.
Теперь об энергии нулевых колебаний Wн. Как следует из квантовой механики (поверьте!),
Wн = h0/2.
Видимо, читатель хочет спросить: где источник этой энергии нулевых колебаний, которые существуют всегда, пока кристалл есть кристалл, за счет какого горючего она сохраняется? Сегодня не следует этого спрашивать! Нет такого горючего! Эта энергия — необходимое условие существования вещества, ее нельзя позаимствовать у данного вещества и перенести в другое. Философ, со свойственной ему склонностью к трудным словам, сказал бы так: она — непременный атрибут материи, она — форма существования материи, она существует, поскольку существует материя. Мы уже не первый раз встречаемся с тем, что не любая фраза, завершающаяся вопросительным знаком, формулирует вопрос, на который можно и нужно отвечать. Вот так! А вот вопрос о том, велика или мала величина энергии Wн (разумеется, по сравнению с какой-либо иной характерной энергией кристалла), — это вопрос! Его следует задать, и на него следует ответить.
Для различных кристаллов величина энергии нулевых колебаний, естественно, оказывается различной в меру отличия величины 0. Изменяется она, однако, в не очень широком интервале значений. Например, для кристалла водорода, который плавится при Т = 14 К, энергия Wн 10– 14 эрг, а для кристалла золота, который плавится при температуре почти в сто раз более высокой (Т = 1336 К), энергия
Wн 3,5• 10– 14 эрг. Обладая близкими энергиями нулевых колебаний, эти кристаллы очень существенно отличаются своими характеристиками, например энергиями связи между атомами. Эти энергии известны: Wн2 10– 14 эрг, WAu 10– 12 эрг. Если сравнить энергии нулевых колебаний с энергиями связи, то окажется, что в случае золота энергия нулевых колебаний составляет всего около трех процентов от энергии связи, а в случае водорода они очень близки. Так как энергия нулевых колебаний от температуры не зависит, а энергия тепловых колебаний с температурой возрастает, то должна существовать некоторая граничная температура ТГ, ниже которой главенствуют нулевые, а выше — тепловые колебания. Величина этой температуры может быть определена из условия
Wн = kТГ, т. е. ТГ = Wн /k.
Если руководствоваться самыми общими соображениями, естественно предположить, что свойства кристалла должны существенно зависеть от соотношения между двумя его характерными энергиями: нулевой и энергией связи. Верное предположение, мы будем иметь случай убедиться в этом.
Об амплитуде нулевых колебаний. Ее легко можно оценить, воспользовавшись уже известным нам соотношением, которое описывает принцип неопределенности. Неопределенности в координате х придадим смысл амплитуды нулевых колебаний Aн, а неопределенность в импульсе рх близка к среднему значению импульса частицы рх, который связан с кинетической энергией нулевых колебаний: Wн = рх2/2т. Таким образом,
рх = (2тWн )1/2
Вот теперь соотношение неопределенностей можно переписать в виде
Aн =ђ / (2тWн )1/2
Из полученной формулы следует, что чем легче атомы, из которых состоит кристалл, тем больше амплитуда их нулевых колебаний. Масса атома водорода mн2 = 1,6 •10– 24 г. При такой массе и известной нам энергии нулевых колебаний их амплитуда оказывается близкой к межатомному расстоянию в кристалле водорода. А вот масса атома золота велика, mAu = 3 •10– 22 г, и амплитуда нулевых колебаний в кристалле золота составляет всего около двух процентов от межатомного расстояния.
Рассуждая о нулевых колебаниях, физики часто пользуются величиной так называемого параметра де Бура. Им определяется отношение амплитуды нулевых колебаний к межатомному расстоянию:
Для подавляющего большинства веществ параметр де Бура мал, значительно меньше единицы. Существуют, однако, и такие, для которых он близок к единице и даже превосходит ее. К примеру, у изотопов гелия, атомы которых очень легки ( 5 • 10– 24 г), оказывается 3!
Когда параметр де Бура существенно превосходит единицу, это означает, что вещество ни при какой температуре не может существовать в кристаллической фазе, если искусственно (приложением внешнего давления) не уменьшить амплитуду нулевых колебаний и таким образом уменьшить до значений порядка единицы и менее. Таким веществом, как известно, является гелий, который в обычных условиях остается жидким при сколь угодно низких температурах. Закристаллизовать его можно, лишь приложив давление. Небольшое, около 25 атмосфер. Естественно, может возникнуть вопрос, почему этим свойством не обладает водород, который, как известно, легче гелия. Дело в том, что параметр де Бура определяется не только массой атомов, но и энергией взаимодействия между ними. В случае водорода эта энергия больше, чем в случае гелия, и в этом причина того, что водород отвердевает, а гелий нет!