Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
Шрифт:
Гипотеза Шрёдингера вдохновила ряд физиков и химиков обратить внимание на биологию – после того как они разочаровались во вкладе своих наук в проект «Манхэттен», создание атомной бомбы во время Второй мировой войны. Когда Шрёдингер читал свои лекции, научный мир считал, что основу генетического материала составляют не ДНК, а белки. В 1944 году появилось первое явное свидетельство того, что на самом деле носитель информации – не белок, а ДНК. Книга Шрёдингера подтолкнула американца Джеймса Уотсона и британца Фрэнсиса Крика на поиск этой «кодированной записи», что в конечном итоге привело их к открытию самой прекрасной структуры во всей биологии – двойной спирали ДНК, внутри которой лежат все тайны наследственности. Каждая цепочка двойной спирали комплементарна второй, и при этом они идут в противоположных (антипараллельных) направлениях. В результате двойная спираль способна „расстегиваться“ посередине, и каждая сторона может служить матрицей или образцом для другой, и так информация ДНК
Детали того, как именно работает этот носитель информации, были открыты и затем подробно разобраны в 1960-х. Это привело к формулированию Криком в 1970 году «центральной догмы», определившей пути, по которым генетическая информация течет через биологические системы. В 1990-х я возглавлю группу, которая прочитает первый геном живой клетки, а потом одну из двух групп, которая прочитает человеческий геном в широко разрекламированной, часто жаркой, раздраженной и политизированной гонке с Уотсоном и другими. На рубеже тысячелетий мы на самом деле впервые увидели замечательные детали апериодического кристалла, содержащего зашифрованную запись человеческой жизни.
В мысли Шрёдингера неявно подразумевалось, что эта запись посылала свои сигналы с момента зарождения жизни, имевшего место больше четырех миллиардов лет назад. Рассмотрев эту идею подробнее, биолог и писатель Ричард Докинз предложил впечатляющий образ реки, текущей из Эдема {4} . Эта медленная река состоит из информации, из рецептов для построения живых существ. Точность копирования ДНК не абсолютна, и случавшиеся в череде поколений повреждения, вызванные кислородом или ультрафиолетом, породили достаточно замен в ДНК, чтобы обеспечить внутривидовую изменчивость. В результате река ветвится и раздваивается, порождая бесчисленные новые виды в течение миллиардов лет.
4
Dawkins, Richard (1995). River Out of Eden. New York: Basic Books. ISBN0–465–06990–8.
Полвека тому назад великий эволюционный генетик Мотоо Кимура прикинул, что количество генетической информации за последние пятьсот миллионов лет возросло на сто миллионов бит {5} . Запись в ДНК стала доминировать в биологической науке до такой степени, что в XXI веке биология стала информационной наукой. Сидней Бреннер, южноафриканский биолог, лауреат Нобелевской премии, заметил, что генетическая запись «должна сформировать ядро биологической теории» {6} . Систематики теперь используют штрих-коды ДНК, чтобы удобнее было отличать один вид от другого {7} . Другие начали использовать ДНК для вычислений {8} или как средство хранения информации {9} . Я руководил попытками не только читать цифровую программу жизни, но и писать ее, имитировать на компьютере и даже переписывать ее, чтобы сформировать новые живые клетки.
5
Kimura, Motoo (1961). “Natural selection as the process of accumulating genetic information in adaptive evolution.” Genetical Research, 2, стр. 127–140.
6
Brenner, Sydney. “Life’s Code Script.” Nature 482, стр. 461, 23 февраля 2012.
7
Kress, W. J., and D. L. Erickson (2008). “DNA barcodes: Genes, genomics, and bioinformatics.” PNAS105 (8), стр. 2761–2762.
8
Qian, Lulu, and Erik Winfree. “Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades.” Science, 3 июня 2011, 332 (6034), стр. 1196–1201.
9
Church, George M., Yuan Gao, and Sriram Kosuri. “Next-Generation Digital Information Storage in DNA.” Science 28, сентябрь 2012, 337 (6102), стр. 1628. Опубликовано онлайн 16 августа 2012.
Почти через семьдесят лет после исходных лекций Шрёдингера, 12 июля 2012 года, я очутился в Дублине по приглашению Тринити-колледжа. Меня попросили вернуться к великой теме Шрёдингера и попытаться рассказать о том, как сейчас понимают и дают определение жизни, основываясь на
В 19.30 в четверг, имея за спиной десятилетия прогресса молекулярной биологии, я вышел на ту же сцену, на которую выходил и Шрёдингер, и, как и он, увидел перед собой премьер-министра в декорациях несравненного Экзаменационного зала Тринити-колледжа. Под огромной люстрой, перед портретами Уильяма Молино, Джонатана Свифта и им подобных я смотрел в аудиторию из четырехсот запрокинутых лиц и ярких огней камер всех видов и типов. В отличие от Шрёдингера я знал, что моя лекция будет записана, передана в прямом эфире, опубликована в блогах и выложена в твиттер, так как я снова затрону тот вопрос, для ответа на который так много сделал мой предшественник.
Следующий час с лишним я объяснял, что жизнь в основном состоит из биологических машин, управляемых ДНК. Все живые клетки работают на программах, записанных в ДНК, которые управляют сотнями тысяч белковых роботов. Мы оцифровывали жизнь десятилетиями, с тех пор как впервые представили, как читать программу жизни посредством секвенирования ДНК. Теперь мы можем идти в другом направлении, начиная с компьютерной цифровой основы, создавая новую форму жизни, химически синтезируя ее ДНК, а потом доводя ее до получения настоящего организма. И поскольку информация нынче цифровая, мы можем пересылать ее куда угодно со скоростью света и снова творить ДНК и жизнь на том конце. Рядом с премьер-министром Эндой Кенни сидел мой давний самопровозглашенный соперник Джеймс Уотсон. Когда я договорил, он взобрался на сцену, пожал мне руку и любезно поздравил меня с «прекрасной лекцией» {10} .
10
http://edge.org/conversation/what-is-life
«Жизнь на скорости света», частично основанная на моей лекции в Тринити-колледже, задумана для того, чтобы описать наш невероятный научный прогресс. Всего за одну человеческую жизнь мы продвинулись от «апериодических кристаллов» Шрёдингера до понимания того, что если с записанного генома можно построить синтетическую хромосому и, следовательно, синтетическую клетку, то ДНК представляет собой программное обеспечение жизни. Эта работа опирается на потрясающие достижения в течение последнего полувека, которыми мы обязаны плеяде невероятно одаренных личностей в лабораториях всего мира. Я сделаю обзор этих разработок в молекулярной и синтетической биологии, отчасти чтобы отдать должное этому эпическому предприятию, отчасти чтобы признать вклады, сделанные ключевыми ведущими учеными. Я не ставил себе цели написать полную историю синтетической биологии, а только лишь пролить немного света на силу этого выдающегося совместного предприятия, которое мы называем наукой.
ДНК как оцифрованная информация не только накапливается в компьютерных базах данных, но теперь может передаваться как электромагнитная волна на скорости света или близко к ней, через биологический телепортер, чтобы заново сотворить белки, вирусы и живые клетки где-то далеко, возможно, навсегда меняя наш взгляд на жизнь. С этим новым пониманием жизни и недавними прорывами в наших способностях манипулировать ею широко раскрывается дверь, за которой появляются новые волнующие возможности. Индустриальная эпоха идет к концу, но мы становимся свидетелями начала эры биологического проектирования. Человечество вот-вот войдет в новую фазу эволюции.
Глава 2. Химический синтез как доказательство
Этот тип синтетической биологии, великая попытка сотворения искусственной жизни, также бросает вызов нашей привычной теории жизни. Если жизнь – это всего лишь самоподдерживающаяся химическая система, способная к эволюции по Дарвину, и мы действительно понимаем, как химия может поддерживать эволюцию, то мы должны быть способны синтезировать искусственную химическую систему, способную к эволюции по Дарвину. Если мы в этом преуспеем, то, значит, теории, на которых основывался наш успех, показали себя как правомочные… И напротив, если мы не сможем получить искусственную форму жизни при попытке создать химическую систему… мы должны сделать вывод, что наша теория жизни что-то упускает.
11
Benner, Steven. Life, the Universe… and the Scientific Method (2009), стр. 45.