Чтение онлайн

на главную - закладки

Жанры

Журнал «Вокруг Света» №04 за 2008 год
Шрифт:

Но, как ни странно, у производителей фотокамер, на чье финансирование надеялся Эдгертон, его технология моментальной съемки энтузиазма не вызвала. Их не впечатлили даже интереснейшие стробоскопические снимки спортсменов, где в деталях виден процесс выполнения упражнений. Тогда изобретатель напрямую обратился к репортерам и тут нашел полное взаимопонимание. Уже к 1940 году электронные вспышки произвели настоящую революцию в спортивной фотографии, а сделанные с их помощью снимки стали регулярно появляться в крупных газетах.

С этого момента хобби стремительно и неуклонно превращается в серьезную технологию. На голливудской студии MGM Эдгертон показывает, как использовать высокоскоростную фотографию для замедленной фиксации быстротечных явлений, а для американских

ВВС разрабатывает мощную стробовспышку, которая позволяет вести ночную разведывательную аэрофотосъемку. Эта технология, в частности, применялась перед высадкой союзных войск в Нормандии…

Падающий в воду предмет порождает столь сложные гидродинамические процессы, что их пока невозможно полноценно смоделировать на компьютере. Но современная фотография позволяет нам хотя бы любоваться ими, пусть и без полного понимания. Фото SPL/EAST NEWS

Отметив заслуги Эдгертона медалью Свободы, министерство обороны привлекло его к решению еще более сложной задачи. Комиссии по атомной энергии потребовались снимки ядерных взрывов на самых первых фазах развития огненного шара. Скорость его расширения настолько высока, что камеры с механическим затвором принципиально неспособны справиться с такой задачей. К тому же фотографировать предстояло с расстояния всего около 10 километров от эпицентра взрыва, так что камера могла использоваться только один раз. Требовалось придумать очень эффективное, нестандартное и вдобавок недорогое решение.

За дело в 1947 году взялась компания EG&G, основанная Эдгертоном совместно с двумя партнерами, Гермешаузеном и Гриером. В качестве затвора решили использовать элемент, известный теперь под названием «ячейка Керра». Это жидкий поляризационный фильтр, способный мгновенно менять направление поляризации под действием приложенного напряжения.

В затворе камеры установили два фильтра-поляроида, один из которых был ячейкой Керра. В начале их направления поляризации были перпендикулярны, и свет через них не проходил. Но в нужный момент на ячейку Керра подавали напряжение, направление ее поляризации менялось, и часть излучения проникала внутрь камеры. Скорость срабатывания ячейки Керра — порядка наносекунды, миллиардной доли секунды. Это позволило уже в первой разработанной камере Rapatronic сократить выдержку до впечатляющих и сегодня 10 наносекунд. Правда, за раз удавалось сделать только один кадр, и для получения серии приходилось ставить рядом несколько камер. В наши дни компания Vision Research продает компактные «рапатроники» Phantom V12 с мегапиксельной матрицей, которые ведут цифровую видеосъемку со скоростью до миллиона кадров в секунду.

Миллисекунда после ядерного взрыва

Этот снимок ядерного взрыва (спустя 1 миллисекунду после детонации) сделан на полигоне Невада в 1952 году камерой «Рапатроник» конструкции Эдгертона с выдержкой 3 микросекунды. В это время температура поверхности огненного шара составляет более 20 000 градусов, а скорость его расширения — десятки километров в секунду. Пятна на поверхности шара — это следы конструкции самой бомбы. В первые микросекунды взрыва бомба вместе с оболочкой и крепежом испаряется, а расширяющийся с огромной скоростью газ формирует ударную волну, которая сжимает и разогревает воздух. Неоднородности исходного распределения вещества в конструкции бомбы приводят к вариациям температуры и плотности по поверхности раздувающегося пузыря. Природа ярких конусов в нижней части шара иная. Это следы стальных тросов-растяжек, которыми удерживалась на вышке бомба. В момент детонации температура в центре взрыва достигает миллионов градусов и значительная часть энергии выделяется в форме теплового рентгеновского излучения. Оно распространяется

со скоростью света, обгоняя ударную волну, и поглощается тросами, вызывая их взрывное испарение. Чем дальше от центра взрыва, тем ниже интенсивность рентгеновского излучения, поэтому дальние части растяжек испаряются позже и выглядят на снимке тоньше.

Погоня за скоростью

И все-таки в наши дни даже такая специальная область, как высокоскоростная фотография, постепенно сдается натиску любителей. Конечно, возможности их камер скромнее, но все же многие современные цифровые аппараты уже умеют снимать с выдержкой 1/4000 секунды. Такой выдержки вполне достаточно, чтобы схватить на лету те же брызги воды.

Пуля, пробивающая яблоко, — визитная карточка сверхскоростной фотографии. Чтобы пуля не смазывалась на снимке, выдержка должна быть не больше нескольких микросекунд. Для многих оказывается неожиданностью, что частицы яблока летят не только по, но и против направления движения пули. Фото SPL/EAST NEWS

Главные проблемы, с которыми должен справиться «высокоскоростной фотограф», — это детектирование момента события, синхронизация со вспышкой и камерой, а также вечная нехватка света. В студии или в лаборатории при съемке падающих капель и разбивающихся стекол можно пользоваться акустическими, вибрационными или контактными датчиками, которые посылают сигнал вспышке и затвору камеры. В полевых же условиях (скажем, при фотоохоте на животных) предпочтительнее датчики, реагирующие на прерывание светового луча.

Однако по сигналу датчиков не всегда можно сразу снимать. Зачастую нужно выждать долю секунды, пока объект войдет в поле зрения камеры. Кроме того, на срабатывание механического затвора уходит одна-две десятых секунды. Поэтому, чтобы вспышка произошла вовремя, необходимо тщательно измерить все задержки и встроить их в контур управления.

Впрочем, если съемка ведется в затемненной студии или ночью, задачу синхронизации можно заметно упростить, используя длительную выдержку: затвор камеры открывается в темноте, скажем, на целую секунду, а изображение регистрируется только в момент срабатывания вспышки. Например, таким способом с помощью буквально любой камеры и серийной фотовспышки, имеющей стробирующий режим, то есть дающей несколько импульсов света подряд, нетрудно зафиксировать на одном кадре, скажем, движения быстро идущего человека.

Но для более серьезных применений важно, что таким способом можно снимать особенно быстрые процессы с экспозициями короче 1/10 000 секунды, недоступными камерам с механическими затворами. Вот только где взять достаточно мощную вспышку, чтобы работала с такой скоростью? Удивительно, но даже при современных темпах развития фотографии подобных устройств, доступных простым смертным, фактически не выпускается.

На стробоскопической фотографии отчетливо видно, что в верхней части траектории спортсмен движется значительно медленнее, чем в нижней. Заметно также, как прогибается турник, на котором выполняется упражнение. Фото SPL/EAST NEWS

И это несмотря на то что со времен Эдгертона прошло уже более 70 лет. Самое большее, что можно вытянуть из лучших серийных вспышек (да и то при снижении мощности до минимума) — это 1/25 000 секунды. Более «скорострельное» оборудование остается сугубо профессиональным.

В результате тот, кто хочет снимать летящие пули, вынужден самостоятельно разрабатывать соответствующие устройства, а это непростая инженерная задача. Нужно заставить мощные конденсаторы, в которых накапливается энергия для вспышки, полностью разряжаться за кратчайшее время. А для этого требуются редкие детали и высокие напряжения, каковые при недостаточной квалификации экспериментатора представляют угрозу даже для его жизни.

Поделиться:
Популярные книги

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Ох уж этот Мин Джин Хо 4

Кронос Александр
4. Мин Джин Хо
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 4

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Хозяйка расцветающего поместья

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Хозяйка расцветающего поместья

Привет из Загса. Милый, ты не потерял кольцо?

Лисавчук Елена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Привет из Загса. Милый, ты не потерял кольцо?

Ученичество. Книга 5

Понарошку Евгений
5. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
фантастика: прочее
5.00
рейтинг книги
Ученичество. Книга 5

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Шаг к звездам

Злотников Роман Валерьевич
2. Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
9.09
рейтинг книги
Шаг к звездам

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну