Чтение онлайн

на главную - закладки

Жанры

Абсолютный минимум. Как квантовая теория объясняет наш мир
Шрифт:

Ввиду особой важности представления о разбросе по импульсу и о связанном с ним разбросе по координате давайте ещё раз рассмотрим смысл разброса. Всё это связано с экспериментами. В отдельном эксперименте по измерению импульса частицы может быть получено лишь одно значение. У вас есть некоторый инструмент. Он выдаёт одно число. Он не может сообщить, что импульс равен одновременно 10 и 50. Каким же образом мы получаем одно значение, если наш пакет обладает распределением импульсов?

Волновой пакет состоит из суперпозиции собственных значений импульса, то есть импульсных волн амплитуды вероятности, однозначно связанных со значениями импульса. Когда выполняется измерение, сопутствующее ему непренебрежимое возмущение заставляет систему «перепрыгнуть» из состояния суперпозиции в определённое собственное состояние. Измерение даёт значение импульса, которое соответствует данному собственному состоянию. Обратите внимание на то, что измерение меняет систему. Чтобы выполнить ещё одно измерение, нужно начать сначала и подготовить частицу тем же способом, что и в первый раз.

При повторении процедуры подготовления волнового пакета он будет состоять из той же суперпозиции собственных значений импульса. Теперь выполним то же самое измерение, что и в первый раз. В общем случае мы получим другое значение импульса, поскольку волновой пакет состоит из множества импульсных волн, с каждой из которых связано своё наблюдаемое значение импульса.

Выполнив огромное число измерений, мы можем получить значение 400 (единицы в данном случае не важны) тысячу раз, значение 390 — восемьсот раз, 410 — восемьсот раз, но 200 и 600 — только по двадцать раз. Если по всем этим числам построить график, получится распределение вероятности, подобное тем, что показаны для импульса в левой части рис. 6.7. Такое распределение вероятности — это результат экспериментального определения состава волнового пакета. Теперь мы знаем, какова величина (вероятность) каждой волны в пакете. Такое же описание применимо и к положению нашего волнового пакета. Каждое измерение положения волновых пакетов, подготовленных идентичным образом, даёт одно положение зарегистрированной частицы. После множества измерений получается распределение по координате, подобное тем, что представлены в правой части рис. 6.7.

Принцип неопределённости Гейзенберга

Чрезвычайно важной является связь между разбросом по импульсу и разбросом по координате, играющая фундаментальную роль в описании частиц в состоянии суперпозиции. Когда разброс по импульсу (p) велик, вдоль оси x распределено множество волн (см. рис. 6.1), которые вместе образуют волновой пакет. Эти волны имеют различную длину (см. рис. 6.2). Когда интерферирует множество волн в широком диапазоне длин, область конструктивной интерференции очень быстро заканчивается с удалением от места, где она максимальна (см. рис. 6.3 и 6.4). Это означает, что разброс по координате (x) мал. Если же волновой пакет состоит лишь из небольшого спектра импульсных волн (значение p мало), область конструктивной интерференции тянется в пространстве гораздо дальше от точки максимума пространственного распределения (см. рис. 6.7). Соответственно величина разброса, или неопределённости положения (x), оказывается большой. Всё это происходит в силу того, что волновые функции, которые описывают собственные значения импульсов, являются по своей природе волнами амплитуды вероятности. Местоположением волнового пакета можно в каком-то смысле считать область конструктивной интерференции, а в областях существенной деструктивной интерференции вероятность обнаружить частицу очень мала.

Формальное соотношение между разбросом по импульсу и разбросом по координате, то есть между p и x, называется принципом неопределённости Гейзенберга. Вернер Карл Гейзенберг (1901–1976) получил Нобелевскую премию по физике в 1932 году

«за создание квантовой механики, приложения которой, в числе прочего, привели к открытию аллотропных форм водорода».

Принцип неопределённости Гейзенберга выражается простым математическим соотношением: xp>=h/4, где h — постоянная Планка, а x и p задают ширину распределений координаты и импульса, как показано на рис. 6.7. (Символ >= означает «больше или равно».) Какой будет знак — «равно» (=) или «больше» (>), — зависит от формы распределений вероятности. Знак «равно» соответствует гауссовой кривой, названной так в честь великого математика Карла Фридриха Гаусса (1777–1855). Кривые, изображённые на рис. 6.5–6.7, представляют собой гауссовы кривые. Это стандартные «колоколообразные кривые», которые описывают такие распределения, как, например, число баллов, полученных на экзамене, при правильно подготовленном тесте и достаточном числе людей, которые его сдают. Кривые Гаусса часто встречаются в физике. Знак «больше» применим при других формах распределения. Для любой формы кривой, построенной по конкретному распределению волн, можно определить, каким будет произведение xp, но оно всегда >h/4, если только кривая не является гауссовой.

Для понимания природы принципа неопределённости важно рассмотреть случай гауссовых кривых, подобных тем, что изображены на рис. 6.7. В этом случае xp=h/4. Данное уравнение

показывает, какая информация может быть одновременно известна о положении и импульсе частицы. Величина h/4 является константой. Таким образом, произведение xp равно константе. Следовательно, если неопределённость импульса p велика, то неопределённость положения x должна быть мала, чтобы их произведение составляло h/4. С другой стороны, если значение p мало, то значение x — велико.

Связь между p и x проиллюстрирована на рис. 6.7. Принцип неопределённости гласит, что вы можете знать кое-что об импульсе частицы и кое-что о её положении, но вы не можете точно знать и положение, и импульс частицы в одно и то же время. Эта неопределённость — невозможность одновременно знать и положение, и импульс частицы — резко контрастирует с классической механикой. Для классической теории совершенно принципиально то, что, как показано на рис. 2.5, положение и импульс частицы могут быть точно известны (измерены) одновременно. Квантовая теория утверждает, что невозможно одновременно точно знать положение и импульс. Они могут быть известны лишь с некоторыми неопределённостями — x и p.

Анализируя соотношение для принципа неопределённости xp=h/4, рассмотрим, что случится, если делать p всё меньше и меньше. Разделив обе части уравнения на p, получаем:

x=h/4•p.

Поскольку p уменьшается, делитель становится всё меньше и меньше, а значит, x возрастает. В пределе, когда p устремляется к нулю, x стремится к бесконечности. Этот предел имеет глубокий смысл. Если p обращается в нуль, импульс известен совершенно точно, но положение становится совершенно неопределённым. При x= частицу можно с равной вероятностью обнаружить где угодно.

Этот результат согласуется с тем, что мы выяснили, обсуждая рис. 6.1, на котором показан вид волновой функции для собственных значений импульса. Когда частица находится в собственном состоянии импульса, значение её импульса определено совершенно точно. Однако её функция амплитуды вероятности, которая описывает вероятность обнаружить частицу в некоторой области пространства, размазана (делокализована) по всему пространству. Во всех точках вероятность обнаружить частицу одинакова: x=. Это контрастирует с волновыми пакетами, изображёнными на рис. 6.7, где суперпозиция собственных состояний импульса порождает состояние, в котором больше нет идеально точно определённого импульса, но зато имеется некоторая информация о положении. Положение и импульс известны с точностью до их неопределённости.

Можно преобразовать соотношение для неопределённостей следующим образом:

p=h/4•x.

Отсюда видно, что в пределе, когда x стремится к нулю (идеально точно определённое положение), p стремится к бесконечности. Если нам совершенно точно известно положение, импульс может иметь любое значение. Волновой пакет, составленный из всех собственных значений импульса (p=), имеет совершенно точно определённое положение. Можно точно узнать p, но лишь ничего не зная об x; можно точно узнать x, но лишь ничего не зная о p. Это называется дополнительностью. Можно узнать x или p, но не то и другое одновременно.

В классической механике можно знать x И p. В квантовой механике можно знать x ИЛИ p. В общем случае для квантовых — абсолютно малых — частиц можно узнать кое-что о p и кое-что об x, но невозможно узнать точно то и другое одновременно.

Поделиться:
Популярные книги

Алый бант в твоих волосах

Седов Павел
1. Алый бант
Любовные романы:
эро литература
5.00
рейтинг книги
Алый бант в твоих волосах

Надуй щеки! Том 3

Вишневский Сергей Викторович
3. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 3

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Господин следователь. Книга седьмая

Шалашов Евгений Васильевич
7. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь. Книга седьмая

Предатель. Ты променял меня на бывшую

Верди Алиса
7. Измены
Любовные романы:
современные любовные романы
7.50
рейтинг книги
Предатель. Ты променял меня на бывшую

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13