Чтение онлайн

на главную - закладки

Жанры

Абсолютный минимум. Как квантовая теория объясняет наш мир
Шрифт:

Итак, мы пришли к выводу, что волновая функция частицы в ящике подобна волновой функции свободной частицы, но волновая функция должна быть равна нулю вне ящика. В своей интерпретации природы квантовомеханической волновой функции Борн наложил некоторые физические ограничения на форму, которую может принимать волновая функция. Одно из них состоит в том, что хорошая волновая функция должна быть непрерывной. Это условие означает, что волновая функция должна плавно меняться от места к месту. Бесконечно малое изменение положения не может приводить к неожиданному скачку вероятности. Это очень простая мысль. Если вероятность обнаружить частицу в некоторой очень малой области пространства составляет, например, 1 %, то смещение на невообразимо малую величину не может вдруг сделать вероятность обнаружения частицы равной 50 %. Это ясно по изображениям волновых пакетов на рис. 6.7. Вероятность плавно меняется от места к месту. Это позволяет нам кое-что добавить к описанию волновых функций частицы

в ящике помимо того факта, что они являются волнами с конечными амплитудами внутри ящика и нулевой амплитудой вовне. Поскольку волновая функция должна быть непрерывной, непосредственно у стенки ящика с внутренней стороны она должна иметь нулевую амплитуду, чтобы совпадать с нулевой амплитудой волновой функции вне ящика.

На рис. 8.3 показан (запрещённый) разрыв волновой функции внутри ящика. Волновая функция обозначена (греческая буква «фи»). По вертикальной оси отложена амплитуда волновой функции. Штриховой линией показан её нулевой уровень. Волновые функции, представляющие собой волны амплитуды вероятности, могут колебаться между положительными и отрицательными значениями. Волновая функция, представленная на рис. 8.3, имеет возле стенок значения, отличные от 0. Однако волновая функция должна быть нулевой вне ящика, то есть для значений x меньше 0 и больше L она должна быть равна нулю. На рисунке волновая функция неожиданно перескакивает от ненулевого значения у стенки внутри ящика к нулевому значению сразу за стенкой вне ящика. Таким образом, волновая функция, изображённая на рис. 8.3, не является допустимой, поскольку она не является непрерывной. Эта функция не может представлять квантовую частицу в ящике.

Рис. 8.3.Разрывная волновая функция внутри ящика. Волновая функция обозначена . По вертикальной оси отложена амплитуда волновой функции. Штриховой линией показано, где волновая функция обращается в нуль; это значение она должна иметь вне ящика. Волновая функция имеет ненулевое значение у стенок внутри ящика и затем должна скачкообразно (негладко) стать равной нулю вне ящика

Волновая функция должна иметь нулевое значение у стенок

Чтобы волновые функции, представляющие частицу в ящике, были физически приемлемыми, их значения у стенок должны быть нулевыми, и тогда они не будут испытывать разрыва на стенках. Выполнить это условие нетрудно. На рис. 3.1 показана волновая функция в свободном пространстве. Она колеблется между положительными и отрицательными значениями. Каждый раз, переходя от положительных значений к отрицательным или от отрицательных к положительным, она проходит через ноль. На самом деле нулевые точки отделены друг от друга половиной длины волны. Поэтому для получения хороших волновых функций частицы в ящике мы должны выбирать волны, длина которых позволяет им укладываться в ящике так, чтобы нулевые точки находились как раз на стенках.

Рис. 8.4.Три примера волновых функций  внутри ящика, которые являются непрерывными. Для ясности они сдвинуты друг относительно друга по вертикали. По вертикальной оси отложена амплитуда волновой функции. Штриховая линия показывает, где волновая функция равна нулю, что должно соблюдаться вне ящика. Волновые функции, имеющие нулевые значения на стенках, непрерывны на них

На рис. 8.4 приведены три примера волн, которые подходят на роль волновых функций для частицы в ящике. Нижняя из них обозначена n=1 и состоит из одной полуволны. Она начинается слева на амплитуде 0, проходит максимум и затем снова опускается до нуля на стенке в точке L. Следующая волна, расположенная выше и обозначенная n=2, состоит из одного полного колебания. Она тоже начинается у левой стенки на амплитуде 0, проходит положительный пик, возвращается к нулю, затем следует отрицательный пик и возвращение к нулю на стенке в точке L. Волна, обозначенная n=3, содержит полтора периода. Подходит любая волна, содержащая целое число полуволн, то есть 1, 2, 3, 4, 5 и так далее половин длины волны, и расположенная так, чтобы она начиналась на нуле слева и заканчивалась на нуле справа.

Величина n — это число полуволн конкретной волновой функции. При n=1

длина волны составляет 2L, поскольку длина ящика равна L, а n=1 соответствует половине длины волны. При n=2 длина волны составляет L, поскольку ровно одна длина волны помещается между стенками. При n=3 между стенками помещаются три полуволны, то есть 1,5=L. В этом случае =L/1,5, то есть = 2/3 L. Обратите внимание, что здесь обнаруживается общее правило: =2L/n, где n — целое число. Для n=1 получаем =2L, для n=2 — =2L/2, для n=3 — = 2/3 L и т. д.

Узлы — это точки, где волновая функция проходит через ноль

Узлы — это ещё одна важная особенность волновых функций. Узлы — это точки, где волновая функция пересекает нулевую линию, переходя от положительных значений к отрицательным или от отрицательных к положительным. Волновая функция n=1 не имеет узлов. У волновой функции n=2 один узел располагается ровно посередине ящика. Волновая функция n=3 имеет два узла. Узлы — это точки, где (помимо стенок) вероятность обнаружить частицу равна нулю. В классической системе, такой как на рис. 8.2, мяч движется взад-вперёд. Он может находиться в любом месте. Однако для частицы в квантовом ящике есть определённые места (узлы), где вероятность обнаружить её равна нулю. Сколько бы измерений идентично подготовленных систем ни выполнялось, мы никогда не обнаружим частицу в узле.

На рис. 8.4 изображены волны амплитуды вероятности. Как уже говорилось, вероятность обнаружить частицу в некоторой области пространства пропорциональна квадрату волновой функции (в действительности квадрату её абсолютной величины, но для наших целей это не важно). На рис. 8.5 представлены квадраты волновых функций, изображённых на рис. 8.4. Квадраты волновых функций всегда положительны, поскольку вероятность обнаружить частицу в некоторой области пространства не может быть отрицательной. Там, где амплитуда велика, частица может быть обнаружена с большей вероятностью. С увеличением n число узлов возрастает. В следующей главе и далее будет показано, что атомные и молекулярные волновые функции имеют узлы.

Рис. 8.5. Квадраты первых трёх волновых функций 2 для частицы в ящике. Для ясности они сдвинуты друг относительно друга по вертикали. По вертикальной оси отложен квадрат волновой функции амплитуды. Штриховая линия показывает, где волновая функция равна нулю. Квадраты волновых функций всегда положительны — они соответствуют вероятности. Волновые функции, изображённые на рис. 8.4, могут быть положительными или отрицательными

Часто спрашивают: как же частицы проходят через узлы? Например, при n=2 имеется узел, расположенный ровно посередине ящика. В классической системе, если мяч находится в левой части ящика и движется направо, но нам говорят, что он никогда не появится в центре ящика, то мы уверены, что мяч не достигнет правой стороны ящика. Однако такие рассуждения в классическом стиле неприменимы к абсолютно малым частицам, таким как электрон в ящике молекулярного размера. Он не обладает одновременно определёнными положением и импульсом, которые соответствовали бы наблюдаемой траектории. Квантовые частицы (в данном случае электрон) описываются как волны амплитуды вероятности. Волны имеют узлы. Они есть даже у классических волн. Квантовая частица «проходит через» узел, поскольку она является делокализованной волной амплитуды вероятности. Представление о траектории, двигаясь вдоль которой от точки A до точки B частица должна пройти все промежуточные точки между ними, просто неприменима к корректному волновому описанию электронов и других абсолютно малых частиц.

Поделиться:
Популярные книги

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Помещицы из будущего

Порохня Анна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Помещицы из будущего

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри