Анатомия и морфология растений
Шрифт:
Лейкопласты – бесцветные, мелкие пластиды, встречающиеся в запасающих органах растений (клубнях, корневищах, семенах и т. д.). Для лейкопластов характерно слабое развитие внутренней системы мембран, представленной одиночными тилакоидами, иногда трубочками и пузырьками. Остальные компоненты лейкопластов (оболочка, строма, рибосомы, ДНК, пластоглобулы) сходны с описанными для хлоропластов. Основная функция лейкопластов – синтез и накопление запасных питательных веществ, в первую очередь крахмала, иногда белков. Лейкопласты, накапливающие крахмал, называют амилопластами, белок – протеопластами, жирные
Пластиды, окрашенные в желтые, оранжевые, красные цвета, носят название хромопластов. Их можно встретить в лепестках (лютик, одуванчик, тюльпан), корнеплодах (морковь), в зрелых плодах (томат, роза, рябина, хурма) и осенних листьях. Яркий цвет хромопластов обусловлен наличием каротиноидов, растворенных в пласто-глобулах. Внутренняя система мембран в данном типе пластид, как правило, отсутствует. Хромопласты имеют косвенное биологическое значение – яркая окраска лепестков и плодов привлекает опылителей и распространителей семян.
Вакуоли содержатся почти во всех растительных клетках. Они представляют собой полости, заполненные клеточным соком и ограниченные от цитоплазмы мембраной – тонопластом. Для большинства зрелых клеток растений характерна центральная вакуоль. Она, как правило, настолько крупна (занимает 70–90 % объема клетки), что протопласт со всеми органеллами располагается в виде очень тонкого постенного слоя. Клеточный сок, содержащийся в вакуоли, представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта. В его состав могут входить углеводы (сахара и полисахариды), белки, органические кислоты и их соли, минеральные ионы, алкалоиды, гликозиды, танины и другие растворимые в воде соединения.
Вакуоли в растительных клетках выполняют две основные функции: накопление запасных веществ, отходов и поддержание тургора. На второй функции остановимся подробнее. Концентрация ионов и сахаров в клеточном соке вакуоли, как правило, выше, чем в оболочке клетки. Поэтому при достаточном насыщении оболочки водой последняя будет поступать в вакуоль путем диффузии. Такой однонаправленный транспорт воды через полупроницаемую мембрану носит название осмоса. Поступающая в клеточный сок вода оказывает давление на постенный протопласт, а через него – на оболочку, вызывая напряженное, упругое ее состояние, или тургор. Тургор обеспечивает сочным органам растения форму и положение в пространстве и является одним из факторов роста клетки.
Если клетку поместить в гипертонический раствор осмотически активного вещества (NaCl, KNO3 , сахарозы), т. е. в раствор с большей концентрацией, чем концентрация клеточного сока, то начнется осмотический выход воды из вакуоли. В результате этого объем ее сокращается, протопласт отходит от оболочки по направлению к центру клетки, тургор исчезает. Это явление обратимо и носит название плазмолиза.
Задание 1. Изучите строение клеток листа элодеи канадской.
Ход работы. Приготовьте предметное стекло, отделите лист элодеи, поместите его в каплю воды и накройте покровным стеклом. Начните изучение препарата при
Зарисуйте строение клеток листа элодеи.
Обозначьте на рисунке хлоропласты, ядро, клеточную стенку.
Задание 2. Проследите процесс плазмолиза в клетках элодеи канадской.
Ход работы. Сняв препарат элодеи со столика микроскопа, на предметное стекло, вплотную к покровному стеклу, под которым в воде находится лист элодеи, нанесите каплю раствора сахарозы или калийной селитры. С противоположной стороны покровного стекла, также вплотную к нему, положите полоску фильтровальной бумаги и оттягивайте воду до тех пор, пока гипертонический раствор, войдя под покровное стекло, полностью не заменит ее. Через 10–15 мин даже при малом увеличении микроскопа можно видеть, что протопласт начинает постепенно отходить от оболочки клетки. Это явление называется плазмолизом.
Зарисуйте плазмолиз в клетках листа элодеи.
Обозначьте клеточную стенку, протопласт.
Задание 3. Рассмотрите строение клеток эпидермиса листа традесканции виргинской.
Ход работы. С нижней стороны листовой пластинки традесканции, возле ее основания, аккуратно снимите кусочек эпидермиса, подцепив его препаровальной иглой. Эпидермис поместите на предметное стекло в каплю слабого раствора сахарозы, закройте покровным стеклом. Эпидермис состоит из прозрачных плотно сомкнутых клеток. В клетках необходимо рассмотреть ядро в ядерном кармашке, многочисленные мелкие лейкопласты, окружающие ядро. Среди бесцветных клеток в эпидермисе расположены устьица. Замыкающие клетки устьиц содержат хлоропласты (рис. 2).
Зарисуйте строение эпидермиса традесканции.
Обозначьте на рисунке ядро, лейкопласты, хлоропласты, замыкающие клетки устьица, устьичную щель, клеточную стенку.
Рис. 2. Строение эпидермиса традесканции виргинской (по: [Практикум… 2001]): 1 – цитоплазма; 2 – вакуоль; 3 – клеточная оболочка; 4 – хлоропласты; 5 – ядро; 6 – лейкопласты
Задание 4. Рассмотрите строение хромопластов в клетках плодов рябины (шиповника).
Ход работы. Небольшой кусочек мякоти зрелых плодов препаровальной иглой перенесите в каплю воды на предметное стекло и накройте покровным стеклом. При постукивании иглой по покровному стеклу препарата, вследствие мацерации, произойдет разъединение клеток. Рассмотрите сначала при малом, а затем при большом увеличении строение клеток плодов. Особое внимание обратите на строение хромопластов, имеющих у рябины вытянутую, а у шиповника – округлую или угловатую форму.
Зарисуйте строение клеток плода рябины (шиповника).