Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей

на главную - закладки

Жанры

Поделиться:

Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей

Шрифт:

Вступление

Мартин Форд

Футуролог, эксперт в области искусственного интеллекта, консультант по расчетам индекса робототехники Rise Of The Robots В Societe Generale, предприниматель из кремниевой долины, член совета директоров и инвесторов компании Genesis Systems

Мартин Форд –

автор книг «Роботы наступают: развитие технологий и будущее без работы» [1] (отмечена премией Financial Times & McKinsey Business Book of the Year, переведена более чем на 20 языков) и «Технологии, которые изменят мир» [2] . Писал о технологиях будущего для The New York Times, Fortune, Forbes, The Atlantic, The Washington Post, Harvard Business Review, The Guardian и The Financial Times. Выступал на многочисленных радио- и телешоу, в том числе на NPR, CNBC, CNN, MSNBC и PBS. Часто делает доклады о влиянии ИИ на экономику, рынок труда и общество будущего (наиболее известно выступление на конференции TED 2017 г.). Получил степень бакалавра в области вычислительной техники в Мичиганском университете в Анн-Арборе и степень магистра бизнеса в Калифорнийском университете в Лос-Анджелесе (UCLA). В компании Genesis Systems участвует в разработке автоматизированных систем с автономным питанием, генерирующих воду непосредственно из воздуха.

1

Форд М. Роботы наступают: развитие технологий и будущее без работы / Пер. с англ. С. Чернина. – М.: Альпина нон-фикшн, 2016. – 429 с.: ил. – (Серия «Искусственный интеллект»).

2

Форд М. Технологии, которые изменят мир / Пер. с англ. А. Кардаш. – М.: Манн, Иванов и Фербер, 2014. – 268 с.

Искусственный интеллект (ИИ) быстро переходит из области научной фантастики в повседневную жизнь. Современные устройства понимают человеческую речь, способны отвечать на вопросы и выполнять машинный перевод. В самых разных областях, от управления беспилотным автомобилем до диагностирования рака, применяются алгоритмы распознавания объектов на базе ИИ, возможности которых превосходят человеческие. Крупные медиакомпании используют роботизированную журналистику, создающую из собранных данных статьи, подобные авторским. Очевидно, что ИИ готов стать одним из важнейших факторов, формирующих наш мир, являясь по-настоящему универсальной технологией, такой как электричество.

В последние годы в СМИ широко освещаются достижения в области ИИ. Бесчисленные статьи, книги, документальные фильмы и телепрограммы предсказывают новую эру, мешая в одну кучу анализ фактических данных с ажиотажем, спекуляциями и даже нагнетанием паники. Говорят, что через несколько лет дороги полностью захватят беспилотные автомобили, оставив без работы водителей грузовиков и такси. В некоторых алгоритмах машинного обучения обнаружили признаки дискриминации по расовому и половому признакам. Неясно, как повлияет на конфиденциальность распознавание лиц. Роботы могут стать оружием. А обладающие интеллектом машины представляют угрозу существованию человечества. Свое мнение озвучивают многие общественные деятели, которые не являются экспертами в сфере ИИ. Радикальнее всего выступил Илон Маск, заявивший, что разработки ИИ сродни призыву демонов и опаснее ядерного оружия. Даже Генри Киссинджер и Стивен Хокинг публиковали мрачные прогнозы.

Поэтому мне хотелось бы рассказать о том, что такое ИИ, и осветить связанные с ним возможности и риски. Для этого я провел серию интервью с выдающимися учеными и предпринимателями, занимающимися ИИ. Многие из них лично повлияли на трансформацию окружающего нас мира; другие – основали компании, которые расширяют границы ИИ, робототехники и машинного обучения.

Разумеется, сформированный мной список субъективен – в развитии ИИ участвует множество профессионалов. Но я уверен, что почти любой человек, обладающий глубокими знаниями в этой области, поддержит

мой выбор. Всех этих людей можно без преувеличения назвать творцами ИИ, приближающими начало новой научно-технической революции.

В интервью я старался задать наиболее острые вопросы, появившиеся в процессе развития ИИ. Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Требуется ли для этой области государственное регулирование? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу? Нужно ли беспокоиться о «гонке вооружений» в области ИИ?

Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было. Поэтому их мысли и мнения заслуживают внимания. Помимо ИИ, мы обсудили образование, карьеру и исследовательские интересы, поэтому чтение будет увлекательным и вдохновляющим.

Искусственный интеллект – это широкая область исследований, сопряженная с множеством дополнительных дисциплин. Многие из моих собеседников совмещали работу в нескольких областях. Сейчас я кратко расскажу, как опрошенные относятся к наиболее важным инновациям в исследованиях ИИ и задачам будущего. Основная информация о каждом из них будет приведена в начале соответствующего интервью.

Подавляющее большинство достижений сферы ИИ последнего десятилетия – от распознавания лиц до машинного перевода и победы в игре го – основаны на технологии глубокого обучения, или глубоких нейронных сетей. Искусственные нейронные сети, в которых программно эмулируется структура и взаимодействие нейронов головного мозга, появились примерно в 1950-х гг. Простые версии этих сетей могли решать элементарные задачи по распознаванию объектов на изображениях, что сначала вызывало сильный энтузиазм. Однако к 1960 г., частично из-за критики Марвина Минского – одного из пионеров ИИ, – нейронные сети потеряли популярность, а им на смену пришли другие подходы.

В течение примерно 20 лет, начиная с 1980-х гг., небольшая группа исследователей продолжала верить в технологию нейронных сетей и продвигать ее. Среди них выделялись Джеффри Хинтон (Geoffrey Hinton), Иошуа Бенджио (Yoshua Bengio) и Ян Лекун (Yann LeCun). Они не только внесли вклад в лежащую в основе глубокого обучения математическую теорию, но и первыми стали продвигать технологию «глубоких» сетей с несколькими слоями искусственных нейронов. Им удалось донести идею нейронных сетей до времен экспоненциального роста вычислительных мощностей и увеличения объема доступных данных. В 2012 г. команда аспирантов Хинтона из Университета Торонто победила в конкурсе по распознаванию объектов на изображениях.

После этого события глубокое обучение стало общедоступным. Большинство крупных технологических компаний – Google, Facebook, Microsoft, Amazon, Apple, Baidu и Tencent – инвестировали огромные суммы в новую технологию, чтобы использовать ее в своем бизнесе. Разработчики микропроцессорных и графических чипов (GPU), такие как NVIDIA и Intel, переорганизовали бизнес под создание оборудования, оптимизированного для нейронных сетей. Именно глубокое обучение сегодня раскрывает сферу ИИ.

Такие ученые, как Эндрю Ын (Andrew Ng), Фей-Фей Ли (Fei-Fei Li), Джефф Дин (Jeff Dean) и Демис Хассабис (Demis Hassabis), используют современные нейронные сети в таких областях, как поисковые системы, компьютерное зрение, беспилотные автомобили и универсальный ИИ. Это признанные лидеры в области преподавания, управления и предпринимательства на базе технологии нейронных сетей.

Однако глубокое обучение подвергается критике. Ряд ученых считают его «одним из инструментов в наборе», утверждая, что для дальнейшего прогресса нужны идеи из других областей. Барбара Грош (Barbara Grosz) и Дэвид Ферруччи (David Ferrucci) занимаются проблемами понимания естественного языка. Гари Маркус (Gary Marcus) и Джош Тененбаум (Josh Tenenbaum) изучают человеческое познание. Орен Этциони (Oren Etzioni), Стюарт Рассел (Stuart Russell) и Дафна Коллер (Daphne Koller) специализируются на вероятностных методах. Джуда Перл (Judea Pearl) за работу по вероятностным (или байесовским) подходам к ИИ и машинному обучению получил премию Тьюринга.

Комментарии:
Популярные книги

Повелитель механического легиона. Том IV

Лисицин Евгений
4. Повелитель механического легиона
Фантастика:
фэнтези
технофэнтези
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том IV

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Последний наследник

Тарс Элиан
11. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний наследник

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Часовая битва

Щерба Наталья Васильевна
6. Часодеи
Детские:
детская фантастика
9.38
рейтинг книги
Часовая битва

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Предопределение

Осадчук Алексей Витальевич
9. Последняя жизнь
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Предопределение