Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
Шрифт:
Сфера робототехники также развивается благодаря таким ученым, как Родни Брукс (Rodney Brooks), Даниэла Рус (Daniela Rus) и Синтия Бризил (Cynthia Breazeal). Бризил вместе с Раной эль Калиуби (Rana El-Kaliouby) – первопроходцы в построении систем, умеющих распознавать эмоции, реагировать на них и вступать в социальные взаимодействия с людьми. Брайан Джонсон (Bryan Johnson) основал компанию Kernel, направляющую технологии ИИ в развитие человека.
По моему мнению, особый интерес представляют три основные темы, поэтому они будут рассматриваться в каждом интервью. Первая касается автоматизации человеческого труда, ведущей к росту безработицы. Глубже всего эту тему раскрыл Джеймс Маника (James Manyika) – глава Глобального института McKinsey (MGI), где активно исследуется влияние технологий на рынок труда.
Второй вопрос, который я задавал всем, касается ИИ, сравнимого
Всем я задал вопрос: «К какому году с вероятностью 50 % будет создан ИИ уровня человеческого?» Большинство предпочло поделиться своими предположениями анонимно. Двое из опрошенных выразили желание официально поделиться своей точкой зрения. Результаты этого опроса приведены в конце книги. Вы увидите, как мнения по важным темам зачастую кардинально расходятся, что представляет собой один из наиболее интересных аспектов данной книги.
Третья обсуждаемая тема связана с последствиями прогресса в области ИИ, ожидаемыми как в ближайшем, так и в отдаленном будущем. Становится очевидной проблема уязвимости взаимосвязанных автономных систем к атакам через интернет. Также выявлена предрасположенность алгоритмов машинного обучения к предвзятости по расовому и половому признакам. Многие из моих собеседников подчеркнули важность решения этой проблемы и рассказали об исследованиях в этой области. Некоторые дали оптимистический прогноз, предположив, что ИИ поможет нам избавиться от предвзятости и дискриминации.
Многих волнует опасность появления полностью автономного оружия. В сообществе исследователей ИИ существует мнение, что роботы или дроны, способные убивать без контроля человека, в конечном итоге могут стать не менее опасными, чем биологическое или химическое оружие. В июле 2018 г. более 160 компаний и 2400 исследователей (среди которых есть мои собеседники) подписали соглашение о запрете производства смертоносных алгоритмов [3] .
Более отдаленной и умозрительной является проблема несоответствия собственных целей сильного ИИ с желаниями человека. Этой темы касались почти все мои собеседники. Чтобы адекватно и рационально осветить эту проблему, я поговорил с Ником Бостромом (Niсk Bostrom) из оксфордского Института будущего человечества (Future of humanity institute, FHI) – автором бестселлера «Искусственный интеллект: этапы, угрозы, стратегии» [4] , в котором тщательно рассматриваются потенциальные риски, связанные с машинами, интеллектуально превосходящими человека.
3
https://futureoflife.org/lethal-autonomous-weapons-pledge/
4
Бостром Н. Искусственный интеллект: этапы, угрозы, стратегии / Пер. c англ. С. Филина. – М.: Манн, Иванов и Фербер, 2016. – 490 с.: ил.
Создатели интеллекта
Интервью для этой книги проводились с февраля по август 2018 г. Практически все они длились не меньше часа, а некоторые существенно дольше. Записанные, транскрибированные, а затем отредактированные командой издательства Packt тексты я дал своим собеседникам на проверку. Уверен, что книга верно отражает мысли респондентов.
Эксперты, с которыми я общался, имеют разное происхождение и сотрудничают с разными компаниями. Но вы быстро обнаружите, насколько сильно влияние Google на сообщества, связанные с ИИ. Из двадцати трех специалистов у семи есть или были связи с Google или холдингом Alphabet. Много талантливых людей работает в Массачусетском технологическом институте (MIT) и Стэнфорде. Джеффри Хинтон и Иошуа Бенджио представляют университеты Торонто и Монреаля соответственно, а правительство Канады ведет четкую промышленную политику, ориентированную на робототехнику и ИИ. В Соединенных Штатах
Проводя интервью, я все время помнил, что книгу будут читать самые разные люди, от специалистов по теории вычислительных машин и систем до менеджеров и инвесторов. Но самая важная часть аудитории – молодые люди, которые могут задуматься о карьере в области ИИ. Сейчас в ней наблюдается дефицит кадров, особенно специалистов с навыками глубокого обучения, что дает возможность для хорошего карьерного роста. В настоящее время прилагаются усилия по привлечению в отрасль талантливых специалистов, и уже широко признается необходимость профессиональной интеграции.
Около четверти опрошенных мной – женщины. Здесь их доля выше, чем в сфере ИИ и машинного обучения в целом. Согласно недавним исследованиям, женщины составляют примерно 12 % ведущих сотрудников в области машинного обучения [5] . В процессе интервью многие подчеркивали необходимость увеличения доли как женщин, так и представителей меньшинств.
Одна из моих собеседниц уделяет особое внимание многообразию в области ИИ. Фей-Фей Ли из Стэнфорда – соучредитель AI4ALL [6] , устраивающей летние учебные лагеря для старшеклассников из мало представленных в этой сфере групп. AI4ALL получила поддержку отрасли, а также грант от Google, и теперь такие программы проводятся в шести американских университетах. В этом направлении еще многое предстоит сделать, но основания для оптимистических прогнозов уже есть.
5
https://www.wired.com/story/artificial-intelligence-researchers-gender-imbalance
6
http://ai-4-all.org/
Хотя книга рассчитана на широкий круг читателей, в тексте будут встречаться специальные понятия и термины. Если вы ранее ничего не знали об ИИ, то я рад, что вас познакомят с ним ведущие специалисты, и рекомендую вам начать с краткого словаря, приведенного ниже. В интервью Стюарта Рассела – соавтора ведущего учебника по ИИ – вы найдете объяснение ключевых концепций области.
Возможность взять эти интервью была для меня честью. Надеюсь, вы тоже увидите в моих собеседниках вдумчивость, умение рассказывать и глубокую приверженность идее работы на благо человечества. Чего в книге нет, так это единодушия. Она наполнена разнообразными, зачастую резко противоречивыми представлениями, мнениями и прогнозами. Понятно только одно: ИИ – широко открытое пространство. Можно строить предположения о природе будущих инноваций, скорости их появления и конкретных вариантах их применения. Именно из-за этой комбинации потенциальной разрушительности с фундаментальной неопределенностью необходим содержательный и всеобъемлющий разговор о будущем ИИ и его влиянии на наш образ жизни. Надеюсь, моя книга внесет в него свой вклад.
Краткий словарь терминов
В нескольких интервью углубленно рассматриваются методы, используемые в сфере ИИ. Для понимания материала специальных знаний не требуется, но встречающиеся термины желательно знать. Вот объяснение наиболее важных из них. Если вы сочтете какой-то раздел технически сложным и запутанным, просто пропустите его и переходите к следующему.
Машинное обучение (machine learning) – раздел ИИ о методах построения алгоритмов, способных обучаться на данных. Другими словами, алгоритмы машинного обучения – это компьютерные программы, которые, по сути, программируют сами себя, просматривая информацию. Раньше считалось, что «компьютеры совершают только те действия, которые были запрограммированы», но эта ситуация меняется. Среди многочисленных типов алгоритмов машинного обучения самый революционный (и привлекающий всеобщее внимание) – это глубокое обучение.
Глубокое обучение (deep learning) – вид машинного обучения, в котором используются глубокие (или многоуровневые) искусственные нейронные сети (artificial neural networks), то есть программное обеспечение, имитирующее работу нейронов мозга. Глубокое обучение послужило основной движущей силой развития ИИ.
Есть и другие термины, которые, скорее всего, новичкам покажутся сложными. Без их глубокого понимания вполне можно обойтись, но краткое пояснение лишним не будет.