Чтение онлайн

на главную - закладки

Жанры

Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
Шрифт:

Иошуа Бенджио

“ИИ, который существует сейчас и может появиться в обозримом будущем, не понимает и не чувствует нормы морали".

Директор Монреальского института алгоритмов обучения (MILA), доктор computer science, профессор кафедры информатики и математических методов Монреальского университета, соруководитель проекта Learning in Machines & Brains

Канадского института перспективных исследований (CIFAR)

Иошуа Бенджио широко известен как один из пионеров глубокого обучения. Он активно продвигал исследования нейронных сетей, в частности обучение без учителя, и стал соавтором книги «Глубокое обучение» [8] – одним из основных учебников по одноименному предмету.

Мартин Форд: Вы играете ведущую роль в исследованиях ИИ, поэтому начать мне хотелось бы с вопроса о том, какие исследовательские проблемы стоят на пути к сильному ИИ.

8

Бенджио И., Гудфеллоу Я., Курвилль А. Глубокое обучение / Пер. с англ. А. Слинкина. – М.: ДМК пресс, 2017. – 652 с.: ил. Книга бесплатно доступна по адресу https://www.deeplearningbook.org.

Иошуа Бенджио: До создания ИИ, сравнимого с человеческим, нам еще очень далеко. Нужно понять, к примеру, почему невозможно создать машину, которая понимала бы окружающую действительность так же, как человек. Чего нам не хватает: обучающих данных или вычислительных мощностей? Многие считают, что причина состоит в отсутствии необходимых базовых компонентов, например, умения видеть причинно-следственные связи в данных, которое позволяет делать обобщения и находить правильные ответы в условиях, отличных от тренировочных.

Человек может представить, как он переживет новый для себя опыт. Например, если вы никогда не попадали в автомобильную аварию, вы все равно сможете прокрутить у себя в голове такую ситуацию и принять правильное решение. Обучение с учителем помогает компьютеру находить статистические закономерности в поставляемых данных, которые заранее классифицированы и размечены людьми.

Многие исследования пока не дали значимых результатов. Компьютер не может автономно приобретать знания о мире, воздействовать на него и наблюдать результат воздействия. Ответы на вопрос, как это реализовать, ищем не только мы.

М. Ф.: Какие проекты в настоящее время можно считать первостепенными в области глубокого обучения? Мне первым делом вспоминается программа AlphaZero. Есть ли другие?

И. Б.: На мой взгляд, из множества интересных проектов наиболее перспективны те, в которых агент в виртуальном мире пытается решать задачи, попутно изучая все с ними связанное. Такими проектами занимаемся мы в MILA, а также компании DeepMind, OpenAI, Университет Беркли, Facebook и Google в рамках проекта Google Brain. Это новые горизонты.

Но это долговременные исследования. Мы работаем не над конкретными вариантами

применения глубокого обучения, а над тем, как научить агента осмысливать окружающую среду, говорить и понимать так называемый обоснованный язык (grounded language).

М. Ф.: Что означает этот термин?

И. Б.: Раньше компьютеры обучались языку, знакомясь с множеством текстов. Причем они достигали понимания только через связь слова с называемой им реалией. В отличие от робота, человек может сопоставить слово не только с объектом из реального мира, но и с вариантами изображения этого объекта.

Многочисленные исследования в области обучения обоснованному языку сводятся к попыткам научить роботов понимать язык хотя бы на уровне отдельных слов и выражений и реагировать соответствующим образом. Это очень интересное направление, необходимое для реализации таких вещей, как диалог с роботами, личные помощники и т. п.

М. Ф.: То есть, по сути, идея состоит в том, чтобы дать агенту свободу в смоделированной среде, позволив ему учиться, как это делают дети?

И. Б.: Именно так. Более того, мы пользуемся результатами исследований в области детского развития и изучаем, какие этапы проходит новорожденный в первые месяцы жизни, постепенно приобретая представления о мире. До сих пор не совсем понятно, какие умения являются врожденными, а какие получены путем изучения.

Несколько лет назад я предложил для машинного обучения практику, которая используется при дрессировке животных – обучение по плану (curriculum learning). Обучающие примеры в этом случае демонстрируются не произвольно, а в последовательности, целесообразной для обучения. Процесс начинается с простых концепций, которые после их освоения учеником можно использовать как «кирпичики» для объяснения более сложных понятий.

М. Ф.: Я бы хотел поговорить о работе над сильным ИИ. Очевидно, что важной составляющей этого процесса вы считаете обучение без учителя. Что еще необходимо сделать?

И. Б.: Мой друг Ян Лекун сравнивает этот процесс с подъемом на гору. Сначала все радуются, насколько высоко забрались, но по мере приближения к вершине встречается множество других гор. Сейчас при разработке сильного ИИ четко видна ограниченность используемых подходов. Пока мы искали способы обучения более глубоких сетей, взбираясь на первую гору, создаваемые системы исследовались очень узко – на том этапе было важно просто подняться на несколько шагов вверх.

Как только применяемые техники обучения дали первые удовлетворительные результаты – мы приблизились к вершине первой горы, – стали заметны ограничения. И это следующая гора, которую нужно будет покорять. Поэтому невозможно сказать, сколько еще открытий потребуется.

М. Ф.: А вы можете хотя бы примерно оценить количество гор? Или период времени, который потребуется на создание сильного ИИ? Просто поделитесь своими прогнозами.

И. Б.: Не вижу смысла говорить о сроках. Невозможно предсказать, когда именно будет открыта дверь, от которой у нас нет ключа. Могу только заверить, что в ближайшие годы никаких прорывов не будет.

М. Ф.: Считаете ли вы перспективными глубокое обучение и нейронные сети в целом?

Поделиться:
Популярные книги

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

У врага за пазухой

Коваленко Марья Сергеевна
5. Оголенные чувства
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
У врага за пазухой

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Блуждающие огни

Панченко Андрей Алексеевич
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни