Чтение онлайн

на главную - закладки

Жанры

Баллистическая теория Ритца и картина мироздания
Шрифт:

Рис. 167. Картина рассеяния пучка атомов кристаллом напоминает дифракционную, но объясняется классически.

Теперь рассмотрим частицу, падающую на поверхность кристалла. Атом отскакивает не от отдельных атомов кристалла, а от взаимодействия с их общим электрическим полем. Поле атомной плоскости имеет волнистые эквипотенциальные поверхности, горбы которых расположены напротив атомов, а впадины — между ними. При этом, чем дальше от границы кристалла, тем более плоскими и гладкими становятся плоскости равного потенциала. От этих эквипотенциальных поверхностей и отскакивают, отражаются атомы или молекулы газа. Чем выше энергия частиц газа, тем от более глубокой поверхности они отразятся, словно от жёсткой, то есть, — под углом равным углу падения. Если сечение поверхности изобразить синусоидой с предельной

крутизной , то видно, что атомы будут отражаться под любыми углами, заключёнными в пределах от –2 до +2. Причём интенсивней всего идёт отражение именно под этими крайними углами: каждый пучок создаёт по два максимума (Рис. 168). У медленных частиц они отстоят мало, поскольку частицы отражаются внешними эквипотенциальными слоями, почти плоскими, — с малым . Эти медленные молекулы с V= d/( t+nT), которых в газе больше всего, и создают высокий главный пик возле угла — максимумы слиты в один (Рис. 167). Зато быстрые молекулы c V= d/tдоходят до более глубоких слоёв с большей волнистостью и крутизной . Именно они создают возле главного два побочных максимума, ошибочно принятых за дифракционные.

Рис. 168. Рассеяние атомов поверхностью кристалла под избранными углами — результат отражения атомов эквипотенциальными поверхностями.

Чем выше скорости быстрейших молекул, пропущенных селектором, тем глубже лежат отражающие их эквипотенциальные поверхности, имеющие большую крутизну . И тем дальше отстоят побочные максимумы от главного. Впрочем, с углублением угол может и снижаться. Вот почему результаты таких опытов неоднозначны, и не приводится их количественный анализ. Ведь, если эффект — классический и не связан с дифракцией, то опыт и не может дать согласия с формулами квантовой механики, доказав ложность волн де Бройля.

Бесполезность волновых свойств частиц и "дифракции" для объяснения эффекта следует и из того, что эффект удалось наблюдать лишь у лёгких атомов гелия и молекул водорода. Если же применялись более тяжёлые инертные газы и пары металлов, то "дифракционная" картина не возникала. Как показали опыты 1971 г., вместо трёх максимумов получался либо один пик, либо два симметричных горба ( "Техника — Молодёжи" № 4, 2001). Видимо, это связано с низкой скоростью тяжёлых атомов, отчего через селектор проходили лишь самые быстрые из них, а все прочие рассеивались. Как показано выше, именно такие атомы, летящие со скоростью V= d/t, и образуют два симметрично рассеянных горба. Если же угол близок к углу предельной крутизны , то из этих двух горбов остаётся только один горб-лепесток, соответствующий отражению пучка атомов под углом +2. А второй горб, отвечающий углу отражения –2, не может возникнуть или имеет ничтожную интенсивность, подобно пику, отвечающему зеркальному отражению под углом . Тем самым, доказано, что отражение атомных и молекулярных пучков носит не дифракционный характер, "предсказанный" квантовой механикой, а вполне классический.

Последний убедительный, по мнению физиков, довод в пользу волновых свойств частиц — это дифракция нейтронов. Поток нейтронов, равно как поток электронов, при падении на кристалл рождает дифракционные картины. Однако, причина их вряд ли в дифракции нейтронов. Скорее дело в том, что нейтроны, как известно, тоже генерируют при попадании в вещество электромагнитные волны рентгеновского и гамма-диапазона. Нейтроны, сталкиваясь с ядром, переводят его в возбуждённое состояние, подобно электронам, возбуждающим атом (именно по такому принципу накачки нейтронами работает, к примеру, -лазер). Вспомним, что нуклоны (протон и нейтрон) играют ту же роль в генерации ядерных спектров, что и электрон с позитроном — в генерации атомных спектров (§ 3.7). Ядро, поглотившее нейтрон, возбуждается и начинает излучать электромагнитные волны, частота fкоторых связана с энергией Eпадающего нейтрона. Возможно, в ядре он распадается до протона и электрона, которые, получив всю энергию нейтрона, начинают вращаться в магнитном поле ядра с частотой f= E/h, излучая на длине волны, близкой к дебройлевской = h/( E/c) h/p, где p— импульс падающего нейтрона (§ 4.3). И, наоборот, излучение частоты fспособно резонансно выбить из ядра нейтрон энергии E=hf, скажем, — в результате удара по ядру фотоэлектрона энергии Eили вылета крутящегося с частотой fпротона, захватившего при вылете из ядра электрон [135, с. 64]. Такой резонансный вылет протонов и нейтронов, под действием гамма-излучения соответствующей частоты, давно известен [19] и называется "ядерным фотоэффектом" (фотоядерными реакциями). То есть, аналогия проявления "волновых" свойств электронов и нейтронов при взаимодействии с атомами — это ещё

один пример родства свойств атома и ядра, а также единого механизма генерации атомных и ядерных спектров (§ 3.1, § 3.7).

Таким образом, снова имеем классическую картину: падающие нейтроны возбуждают излучение соответствующей длины волны, которое и дифрагирует на кристалле. Затем, в тех точках дифракционной картины, где излучение наиболее интенсивное, из ядер вылетают нейтроны (в ходе ядерного фотоэффекта § 4.6), которые регистрируются приборами. Рентгено-, электроно- и нейтронография потому и стали самыми популярными методами анализа структуры вещества, что в каждом из них создаётся рентгеновское излучение, удобное для изучения кристаллов. Разнятся лишь способы генерации и регистрации этого излучения. Таким образом, ни к чему считать частицы ещё и волнами. Все их так называемые "волновые" свойства — это иллюзия. Принцип Оккама снова оправдал себя!

Явления и законы природы жёстко детерминированы и вполне познаваемы. Поэтому, учёный, желающий добиться настоящего успеха в науке, должен быть, прежде всего, оптимистом, обладать безграничной уверенностью в возможности понять и объяснить явления природы на рациональной основе, с позиций наглядных классических, а не мистических представлений. Если по-настоящему захотеть и постараться, то удастся найти простое естественное объяснение любым загадкам природы. Именно в таком оптимизме, смелости воображения, как верно заметил Зоммерфельд, и состояла одна из причин успеха Ритца в понимании явлений природы. Не зря, именно Ритц, в согласии с законами диалектики, непротиворечиво соединив волновые и корпускулярные представления о свете, впервые дал наглядное адекватное классическое описание потока волн материи — образуемых реонами кинематических волн, аналогичных классическим электронным "волнам" в клистронах (§ 1.11).

§ 4.12 Работа выхода и туннельный эффект

Молньи стремителен бег, и разит она тяжким ударом И с быстротою всегда чрезвычайной скользит при полёте Из-за того, что сама в облаках набирается силы, Прежде чем вылетит вон, получая огромную скорость. А когда больший напор её выдержать туча не может, Вырвавшись тут, вылетает она с изумительной силой, Вроде того, как снаряд из могучих несётся орудий. Кроме того, элементы её мелки и гладки, И потому не легко для молньи поставить преграды. Внутрь проникает она и проходит по пористым ходам. Тит Лукреций Кар, "О природе вещей", I в. до н. э. [77]

Чтобы окончательно доказать адекватность и достаточность классического описания движения частиц, рассмотрим напоследок туннельный эффект. Туннельный эффект — это последнее важное "проявление волновых свойств" электронов и других частиц, которое тоже легко истолковать классически. Электроны образуют в металле электронный газ, который, как всякий газ, не имеет резких границ и, потому, частично выходит за пределы металла. Именно так электроны и "туннелируют" сквозь границу без помощи волновых свойств.

Рассмотрим подробней эффект туннелирования и природу работы выхода электронов. Известно, что электрон может покинуть металл, лишь затратив энергию, равную работе выхода A[36, Ч.I]. Вот почему, для интенсивной электронной эмиссии из металла требуется его нагрев. Только так возникают электроны со скоростями и энергиями, достаточными для ухода с поверхности (термоэлектронная эмиссия). Но, как оказалось, электроны могут уходить даже с поверхности холодного металла, если приложить снаружи достаточно сильное электрическое поле (холодная эмиссия). Считали, что в классической теории такое невозможно. Ведь для того, чтобы электрон набрал в электрическом поле энергию выхода, ему надо пройти в этом поле некоторый путь, отойдя от поверхности. А, чтобы выйти из металла, нужна энергия, равная работе выхода A. Возникает порочный круг: электрон мог бы набрать требуемую энергию, если б перепрыгнул через энергетический барьер, но для этого-то ему и нужна энергия [134]. И, всё же, электроны как-то выбираются из металла, словно беря энергию взаймы и следуя не поверх барьера, а сквозь него, как сквозь туннель, огибают барьер словно волны, будучи размыты в пространстве и времени, за счёт квантовой неопределённости. Вот почему, этот туннельный эффект считают возможным лишь в рамках квантовой механики.

И, всё же, туннельный эффект не доказывает квантовых фантазий о размытом в виде волны электроне, но допускает чисто классическую трактовку, если правильно истолковать работу выхода. Прежде всего, подвижные электроны, даже в холодном металле, то и дело покидают его поверхность, придавая ей положительный заряд, который тянет электроны обратно (Рис. 169). В итоге, над поверхностью любого металла реет облако взмывающих и падающих электронов, — своего рода электронная атмосфера, окружающая металл тонким слоем. Эта прослойка и задаёт работу выхода. Каждый электрон, вырвавшись с поверхности металла, влетает в облако, электрическое отталкивание которого создаёт тормозящую силу FT, тянущую электрон назад. Электрон между отрицательно заряженной вершиной облака и положительно заряженной поверхностью оказывается как меж пластин конденсатора с запирающим полем.

Поделиться:
Популярные книги

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Имперский Курьер. Том 2

Бо Вова
2. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 2

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Ротмистр Гордеев 3

Дашко Дмитрий
3. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 3