Баллистическая теория Ритца и картина мироздания
Шрифт:
Рис. 46. Равенство сил взаимодействия зарядов (или частей одной заряженной частицы) в покое (а) и нарушение их баланса при ускорении системы (б).
Результирующая сила F=2 FaL/ c 2направлена против движения и пропорциональна величине ускорения a. То есть, возникает своего рода электрическая сила инерции. Так, может, фиктивная сила инерции F ин, вводимая иногда для удобства в механике, реальна? Ускорение тела будет расти до тех пор, пока сила инерции не уравновесит все прочие силы, — ситуация как в статике. На каждый заряд ускоренно движущегося тела будет действовать такая тормозящая сила. Любой заряд, скажем электрон, воздействует сам на себя. Его передняя (по ходу ускорения) часть сильнее отталкивает заднюю, чем задняя
Таким образом, пока известны два типа массы: инертная и гравитационная. У всех тел и частиц они положительны, поскольку любые тела и частицы сопротивляются ускорению и подвержены тяготению. И ни в коем случае нельзя считать, подобно Эйнштейну в ОТО, что эти типы масс эквивалентны друг другу, — ведь они, как видели, имеют разную природу. Можно говорить лишь о пропорциональности или равенстве инертной и гравитационной массы в соответственно подобранной системе единиц. А что же с ньютоновым определением массы, как количества материи? Судя по всему, существует и этот третий вид массы. Именно он имеет фундаментальный смысл, а инертная и гравитационная масса возникают лишь как частные проявления материальной массы. Материальная масса может быть, как выяснили, и отрицательной, если речь идёт об антиматерии (минус-материи), скажем, — о позитроне. При этом, инертная и гравитационная масса позитрона положительна и равна электронной массе, поскольку позитрон так же сопротивляется ускорению и притягивается Землёй, как электрон.
Что касается реонов и ареонов, то у них гравитационной массы нет вовсе, как нет и заряда, ибо только удары этих частиц создают гравитационное и электрическое воздействие. Гравитационная масса M, подобно электрическому заряду Q, — это мера производительности источника поля, то есть количество материи (реонов и ареонов), ежесекундно испускаемой телом (§ 1.6). Но, если полный заряд Q— это разность потоков материи и антиматерии (полный поток реонов и ареонов с учётом знака их массы), то гравмасса — это сумма этих потоков по модулю. Вот почему сам реон, не будучи источником реонов, не имеет электрического заряда и гравитационной массы. Итак, всего существует три типа массы: материальная, инертная и гравитационная, обусловленные разными причинами. И надо чётко различать, о какой из масс идёт речь в каждом случае. Вообще же, рассуждать о природе массы следует очень осторожно. К этому призывал и сам Ритц. Допуская электромагнитную природу массы, он не исключал, что инерция — это самостоятельное свойство тел. Другими словами, возможно, инертная масса определяется количеством материи, и понятие массы не сводится ни к какому другому. Поэтому, предложенные здесь модели не решают проблему массы, а лишь ставят её ребром, дают взгляд с позиций БТР на то, каким это решение может быть.
§ 1.18 Изменение хода времени в поле тяготения
Маятник находится совершенно в таких же условиях, как если бы он был перенесён на другую планету, где ускорение силы тяжести слабее. Из формулы T=2(l/g)1/2, следует, что с уменьшением ускорения силы тяжести g время колебания T должно возрасти: маятник будет колебаться медленнее.
Затронув проблему гравитации и массы, нельзя не коснуться и проблемы времени. Согласно общей теории относительности (ОТО) тяготение способно влиять на ход времени [160]. Более того, в опытах, казалось бы, удалось обнаружить это влияние. Так, к примеру, был выполнен следующий опыт. На земле и на борту самолёта устанавливали одинаковые синхронизованные атомные часы. Самолёт поднимался в воздух и, проведя некоторое время в полёте, приземлялся, после чего показания часов сверялись (§ 1.18). При этом выяснилось, что часы, побывавшие в небе, ушли вперёд [57]. Получалось, что на высоте нескольких километров время течёт чуть быстрее, чем возле поверхности Земли. Этот результат, казалось бы, и качественно и количественно подтверждал теорию относительности.
И, всё же, эти опыты отнюдь не свидетельствуют, что гравитационное поле способно влиять на ход времени. Логичнее предположить, что ход времени везде одинаков, и причина только в часах, в их устройстве. Именно на часы, а не на само время влияет гравитация. Так, если б мы использовали в опыте не атомные, а простые маятниковые часы, то часы, побывавшие на высоте (где тяготение и ускорение gсвободного падения меньше, чем на земле), наоборот бы отстали, причём заметно. И тоже причина была бы в гравитации, ибо, чем меньше ускорение g, тем меньше частота колебаний и выше период качаний маятника. Однако, из этого никто не заключает, что возле земли время течёт быстрее, чем вдали от неё. Причина изменения скорости хода часов чисто механическая.
Спрашивается, можно ли верить в непогрешимость атомных часов? Можем ли мы поручиться, что на их показания не влияет гравитация? Напротив, есть все основания считать, что тяготение влияет на ход атомных часов. В качестве эталона времени в таких часах выступает атом, точнее частота колебаний электрона в нём. Но доказано, скажем, эффектом Зеемана и Штарка, что внешние поля (магнитные и электрические), действуя на электрон, способны влиять на эту частоту (§ 3.5). Так что, гравитация, особенно если она, как было показано, электромагнитной природы, тоже должна управлять ходом таких часов (это влияние можно даже рассчитать), — именно ходом часов, процессов, но — не самого времени. Такой грависпектральный эффект предсказал в своей книге "Новый взгляд на теорию
Таким образом, нельзя абсолютизировать никакие эталоны времени, ибо всегда могут найтись часы более точные, избавленные от влияния внешних факторов, влияющих на стабильность хода часов. Нужно помнить, что абсолютного времени самого по себе не существует, как поняли ещё Демокрит и Лукреций: течение времени мы наблюдаем лишь благодаря движению тел (§ 5.6). Однако абсолютное, независимое ни от чего время есть в том смысле, что движения тел взаимосвязаны, их можно соразмерить, найдя сколь угодно точные часы, избавленные от посторонних влияний и позволяющие контролировать эти движения, обнаруживая их равномерность (стабильность) или неравномерность, измерять с их помощью относительные скорости протекания процессов. Точно так же, по теории Ритца, принимающей классический принцип относительности Галилея, не существует абсолютной скорости тел, абсолютного пространства. Но, при этом, по первому закону Ньютона, мы всегда можем найти такие тела, которые, не будучи подвержены действию сил, внешнему влиянию, движутся равномерно. И, уже относительно этих тел и связанных с ними систем отсчёта, можно сколь угодно точно определять относительные скорости движения других тел, а также то, движутся ли они равномерно или ускоренно, подвергаясь внешним воздействиям. Именно в таком смысле Ньютон и ввёл абсолютное пространство и время: под абсолютностью он понимал их неизменность, неспособность тел и внешних условий менять пространство и темп течения времени. Но не потому, что пространство и время — абсолютно жёсткие и фиксированные, а потому, что их нет и влиять просто не на что, поскольку пространство — это пустота без свойств, в которой координаты выражают лишь взаимное положение тел, а время — количественная мера, придуманная для сопоставления движений тел в этой пустоте. Пространство и время — это абстрактные математические понятия, которые физики с подачи Эйнштейна, подобно полю, наделили, по недомыслию, физической реальностью и свойствами, в том числе, — способностью изменяться под действием тел.
Как отмечал Ритц и, за два тысячелетия до него, Демокрит с Лукрецием, пространства и времени самих по себе просто не может существовать, поскольку это означало бы существование абсурдного центра, начала, границы Вселенной и времени (§ 2.6), а также материальность пустого пространства и времени, реально не обладающих собственными физическими свойствами (§ 5.6). Существуют лишь пространственно-временные связи и соотношения, а, потому, все процессы проявляются в нашем мире лишь в форме относительных, а не абсолютных движений тел. Этот классический кинематический принцип относительности, введённый ещё Демокритом, Коперником и Галилеем, не имеет ничего общего с аристотеле-эйнштейновским принципом относительности. Ведь, по Эйнштейну, сама реальность каждый раз изменяется в угоду наблюдателю, и относительными становятся не только кинематические характеристики, но и сама материя: её количество (масса), её протяжённость (длина), временной масштаб её внутренних процессов (период), который, согласно БТР, можно надёжно зафиксировать по достаточно точным часам, сопоставив с их ходом.
§ 1.19 Изменение хода времени при ускорении и принцип эквивалентности
Бёммель придавал источнику и приёмнику одинаковое ускорение и измерял изменение частоты. Эмиссионная теория даёт готовое предсказание результата. Если ускорение в этом эксперименте равно g (принятое для упрощения расчётов постоянным) и направлено от источника к приёмнику, разнесённым на расстояние h, относительная скорость волн Ритца и приёмника в момент поглощения — c+gh/c=c(1+gh/c 2). Это приводит к небольшому сдвигу частоты для приёмника на gh/c 2, что находится в согласии с экспериментом.
Согласно общей теории относительности, на ход часов, подобно гравитации, влияет также их ускорение. Но, ведь, и ход маятниковых часов зависит от ускорения в той же мере, что и от силы тяжести. При ускорении на маятник действует, кроме силы тяготения, дополнительно сила инерции, заставляющая качаться маятник чаще или реже. Поэтому, нельзя отрицать подобного влияния ускорения и на частоту колебаний электрона в атоме, а, значит, и на скорость хода атомных часов. Таким образом, в опытах всегда меняется ход часов (маятниковых и атомных), а не самого времени. Надо, к тому же, помнить, что может проявиться и рассмотренный ранее эффект Ритца, согласно которому на частоту излучения атомов кроме скорости влияет ещё их ускорение (§ 1.10). Сдвиг частоты f/f= aL/ c 2, предсказанный БТР, совпадает с найденным в опытах. Он, действительно, был обнаружен в эксперименте Бёммеля, где источнику гамма-лучей, расположенному на расстоянии L=dот поглотителя, придали лучевое ускорение a. Сдвиг частоты гамма-лучей, измеренный с помощью эффекта Мёссбауэра, составил f/f= ad/ c 2, что подтверждало формулу Ритца [153, с. 136].