Баллистическая теория Ритца и картина мироздания
Шрифт:
Итак, подобно ядрам и протонам (§ 3.2), из электронов и позитронов составлены, как из кирпичиков, и все прочие частицы — мезоны, гипероны, резонансы и т. п. При этом, электроны и позитроны составляют прежде блоки (мезоны), а уже из них строятся тяжёлые частицы. Мы, ведь, никогда не говорим, что автомобиль состоит из винтиков, гаек, деталек, сварных листов и т. п. Но показываем, что в нём есть двигатель, трансмиссия, шасси и кузов. Так и частицы правильнее подразделять не на сотни отдельных электронов и позитронов, а на образуемые ими крупные комплексы, блоки, то есть, — на более сложные и тяжёлые частицы. Выше было показано, что фактически любую частицу можно представить в виде набора трёх типов мезонов, комбинируемых в разных сочетаниях. Потом удалось свести их даже к двум, когда выяснилось, что -мезоны (пионы) — сами составные. Далее оказалось, что картину можно ещё упростить и исключить минусовые массы, если признать и -мезон (мюон) составной частицей, включающей в себя несколько гаммонов. То, что мюон составной, следует уже из его распада.
Как легко видеть, гаммонов в мюоне может
Рис. 118. Предполагаемая схема распада мюона, его возможное строение и массы компонентов.
Итак, если мюон состоит из трёх гаммонов, одного октона и одного электрона, его масса составит 66·3+8+1=207. Тогда нейтральный пион состоит из четырёх гаммонов, а заряженный пион будет состоять из четырёх гаммонов, октона и электрона. Так что, его масса M=66·4+8+1=273. Таким образом, заряженный пион отличается от незаряженного только наличием октона, сцепленного с электроном. Гаммон и октон тоже должны, в свою очередь, состоять из электронов и позитронов. Удивляет, однако, почему же именно эти сочетания элементарных зарядов образуют стабильные блоки в виде длительно не распадающихся частиц. В случае октона, ответ напрашивается сам собой: ведь 8 — это число, сопряжённое с высокой устойчивостью. Недаром, в таблице Менделеева восьмёрка играет столь важную роль, порождая восемь групп элементов и служа основным периодом повторения свойств элементов, подобно тому как в музыке через октаву повторяется звукоряд. Также 8 — это одно из шести магических чисел, — особо устойчивых сочетаний нейтронов или протонов в ядре (§ 3.6). Интересно отметить, что и БТР с "Луноходом" сконструировали восьмиколёсными именно для обеспечения устойчивости на пересечённой, "тряской" местности (Рис. 200). Подобная "тряска" действует и в мире элементарных частиц, подвергающихся постоянным ударам (§ 3.14). И, во избежание скорого крушения, частицам необходима геометрическая устойчивость.
Причину такой "магичности" числа восемь легко понять. Ведь 8=2 3: именно восемь частиц образуют куб, размещаясь в его вершинах. Видно, так устроен и октон: из чередующихся в углах кубика четырёх электронов и четырёх позитронов. Заметим, что ещё И. Ленгмюр допустил способность восьми электронов, расположенных в атоме в вершинах куба, образовывать сверхстабильную структуру, чем объяснил периодичное повторение свойств элементов и апатичность инертных газов, с их целиком заполненными куб-оболочками (Рис. 106). Зато квантовая физика так и не объяснила толком, почему групп элементов ровно восемь. И лишь кристаллическая модель атома позволяет обосновать избранность восьмёрки, поскольку восьмивершинный куб и параллелепипед — это самая распространённая и простая форма кристаллической ячейки.
Осталось выяснить, почему стабильным оказывается и гаммон, — частица с массой в 66 электронных. Если дело в устойчивости кристаллической структуры, то причина, возможно, в близости 66 к 64=4 3. Иными словами, 64 частицы составляют куб с ребром в 4 частицы. И он тоже будет стабильным, поскольку электроны и позитроны стали бы в нём чередоваться, словно положительные и отрицательные ионы в кубическом кристалле соли (Рис. 119). Таким образом, гаммон должен состоять из 32-х электронов и 32-х позитронов. Правда, непонятно, откуда берутся в гаммоне две дополнительные единицы массы. Но, учитывая, что масса его рассчитана теоретически, а не измерена в опыте, вполне может статься, что реальная масса — именно 64. К тому же, надо учесть, что взаимодействие электронов и позитронов, их сближение и движение отдельных частиц может приводить к неточному измерению их общей массы (§ 3.18).
Рис. 119. Строение октона и гаммона, составленных из чередующихся электронов и позитронов.
Раз мюоны и пионы — составные, то все прочие частицы, представленные их наборами, можно представить и в виде сочетаний более простых частиц. Поэтому, пользуясь прежними таблицами (Таблица 2 и Таблица 3, учтённые в колонке I) и тем, что =3Г+О, 0=4Г, а —= 4Г+О, можно нарисовать более полную и точную картину
Итак, все типы частиц можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8–9), дополненных иногда, для баланса заряда, электроном или позитроном. Существование гаммонов подтверждают реакции распада пионов, где бесследно исчезает масса, кратная 66 (Рис. 116). А реальность октонов следует из распада мюонов и того, что в семействах частиц (Таблица 4, выделены серым) массы Mразнятся в среднем как раз на 8,5 единиц. Похоже, гаммоны и октоны, подобно нуклонам в ядре, выстраиваются в некие пространственные структуры, что объясняет стабильность одних частиц и нестабильность других. Мерой стабильности будет, как везде, степень симметрии, совершенства частицы, близости её к правильным геометрическим телам [21]. Частицы, структура которых несовершенна, — нестабильны и быстро распадаются. Так, и в природе: прочнее всего, тела, имеющие совершенную, кристаллическую форму. Менее прочны кристаллы с дефектами структуры. Наконец, наименее прочны аморфные тела. Всё это хорошо видно на примере кварца, кварцевого стекла и обычного стекла.
Более стабильны сочетания, в которых число частиц равно кубу или квадрату целого числа (Рис. 120). Взять, к примеру, гаммоны или октоны, построенные, соответственно, из 64 и 8 частиц. Так же, и пионы, состоящие из 4-х гаммонов, образующих квадрат 2x2, живут заметное по меркам микромира время. По той же причине, достаточно стабилен -мезон, составленный из 4x4=16 гаммонов. Наиболее симметричен протон: в нём 27=3 3гаммонов. Поэтому протон — одна из немногих стабильных частиц. Другая частица, у которой число гаммонов равно кубу, — это +– гиперон: 64=4 3(Таблица 5). Вот почему эта частица, несмотря на большую массу, при которой стабильность обычно мала, обладает, всё же, заметным временем жизни.
Рис. 120. Возможная структура элементарных частиц, состоящих из гаммонов, в свою очередь образованных электронами и позитронами.
Пользуясь этим, можно предсказать новые частицы. Особая стабильность должна отличать частицу из восьми гаммонов, образующих куб, поэтому назовём её "кубоном", обозначив буквой " C" (Рис. 120). Однако, такая частица с M=668=528 до сих пор не открыта. Возможно, причиной тому её нейтральность и стабильность (от кубической структуры), что мешает её обнаружить, как и гаммоны с октонами. Правда, согласно книге Д. Данина [43], в арагацкой высокогорной обсерватории среди космических лучей некогда уверенно регистрировали частицы с массами около 300, 500 и 1000 электронных. Частицы с массой около 300 (-мезоны) и 1000 (K-мезоны) действительно были впоследствии открыты. Однако частицы с Mпорядка 500 до сих пор не найдены. Так, может, это были кубоны? Их существование подтверждает и распад -мезона, который при делении на два заряженных пиона, бесследно теряет в весе как раз массу 528. Не кубон ли её уносит?
Такой кристаллический подход к объяснению стабильности частиц позволяет понять, почему из всех частиц наиболее стабилен, прочен и долгоживуч протон. Таблица 4 сразу даёт на это ответ: только у протона число гаммонов x=27 составляет куб целого числа: 27=3 3. По-видимому, эти 27 гаммонов складываются в правильный куб, вроде кубика Рубика, тоже состоящего из 27 мелких кубиков. Что же касается шести октонов, то они, вероятно, выполняют в этом кубе связующую функцию (подобно тому, как в кубике Рубика есть шесть сцепляющих кубики шарниров) или располагаются на шести его гранях. Таким образом, лёгкие октоны могут играть внутри частиц ту же роль, что нейтроны в ядрах, будучи связующим звеном, цементом, прокладкой между блоками частиц. Могут они выполнять и функции гнезда, в котором крепко сидят электроны и позитроны, придающие частицам заряд. Учитывая сказанное, можно узнать строение и всех прочих частиц, сложенных из кубиков, наподобие игрушечных зданий (Рис. 121). Таким образом, частицы должны выглядеть не как шарики, а иметь углы, грани, кромки, совсем как кристаллы. Микромиру, равно как объектам макро-, да и мегамира, свойственно кристаллическое, ячеистое, клеточное строение!