Чтение онлайн

на главную - закладки

Жанры

Баллистическая теория Ритца и картина мироздания
Шрифт:

Рис. 121. Возможное строение протона и пионов, построенных из сотен электронов и позитронов, как кристаллы соли — из ионов Na+ и Cl-.

Стоит отметить, что из одного и того же числа гаммонов и октонов, по-разному их соединяя, можно составить несколько устойчивых конструкций. Возможно, поэтому частицы данной массы и заряда встречаются в нескольких вариантах. Точно так же, и ядра, имеющие одинаковый протон-нейтронный состав, могут иметь разные свойства и периоды полураспада за счёт разного пространственного размещения в них протонов и нейтронов (§ 3.6). Так же, и в химии у молекул может быть идентичный атомный состав, но разные свойства. Химические свойства молекулы зависят не только от того, какие её составляют атомы, но и от того, в каком порядке они располагаются и какие пространственные структуры образуют, как было открыто ещё русским химиком А. Бутлеровым, и как было предсказано ещё до н. э. Демокритом и Лукрецием (§ 5.16). Это явление получило название изомерии, а частицы одинакового

состава, но разных свойств были названы изомерами. Точно так же, как у молекул, есть изомеры у ядер (§ 3.6) и элементарных частиц. Так, K 0– мезоны состоят из двух сортов частиц: K 0 S и K 0 L [86]. Равенство их масс, зарядов и магнитных моментов говорит об идентичности их электрон-позитронного состава, но располагаются электроны и позитроны в изомерах по-разному, что и ведёт к различию их свойств (времён жизни и типов распада). Возможен и такой случай, когда электроны и позитроны образуют одинаковые, но зеркально симметричные частицы, — зеркальные изомеры, также известные у органических молекул, например, у сахара, — как было открыто ещё Л. Пастером. Возможно, существование, в разной пропорции, правых и левых зеркальных изомеров частиц — ответственно за преимущественное испускание продуктов распада частиц в неком избранном направлении (§ 3.11).

Как же возникает геометрически точная кристаллическая форма атомов, ядер и частиц? Разве не должна материя собираться под действием сил притяжения в компактные капли-шарики, какими любят представлять частицы? Природа их геометрически чёткой формы та же, что у кристаллов, правильные грани которых когда-то тоже удивляли людей. Видно, форма кристаллов и подсказала Платону идею частиц-многогранников (§ 5.3). Ровные плоские грани кристаллов возникают оттого, что они построены из одинаковых упорядоченно сложенных частиц, атомов. Правильное размещение частиц обеспечивает минимум энергии связи, к которому стремятся все системы. Атомам энергетически выгодней не надстраивать атомную плоскость, а дополнять атомные слои до ровных, контактируя с возможно большим числом соседей. Так и возникают правильные многогранные формы кристаллов.

Если атомы, ядра и элементарные частицы и впрямь имеют структуру кристаллов, то и они должны быть составлены из множества однотипных упорядоченно расположенных частиц. И, точно, атом, как выяснили, сложен из ядра и электронов, образующих правильные конфигурации — слои, уровни, задающие чёткую структуру таблицы Менделеева (§ 3.3). Ядро, в свою очередь, образовано из протонов и нейтронов, расположенных так же упорядоченно, что подтверждают магические числа протонов и нейтронов, образующих особо стабильные ядра (§ 3.6). Наконец, сами протоны, нейтроны и прочие элементарные частицы — вовсе не элементарны, раз могут распадаться. Они образованы другими однотипными частицами, — электронами и позитронами, опять же сложенными в виде чёткой решётки. Проверить, так ли всё это на самом деле, можно с помощью метода, аналогичного рентгенографии обычных кристаллов. Направляя на одинаково сориентированные атомы, ядра и частицы пучок гамма-лучей с длиной волны порядка межэлектронного расстояния (10 –15м), удастся выявить по методу Лауэ дифракцию гамма-лучей на расположенных в правильном порядке элементарных частицах. Если на фотоплёнке возникнет дифракционная картина, то это докажет реальность кристаллического строения частиц. Изучая полученную лауэграмму, можно будет также точно рассчитать, как именно и на каком расстоянии расположены элементарные частицы, образующие более крупные кристаллические комплексы.

Итак, именно геометрический, пространственный подход открывает истинную структуру элементарных частиц и позволяет понять многие их свойства. А квантовый подход — слишком сложен, условен, формален и совершенно не отражает реального устройства частиц. Такой кристаллический подход к строению и распаду частиц мог быть развит ещё век назад первым исследователем радиоактивности — Пьером Кюри. Именно Кюри как химик и физик много сделал для понимания свойств кристаллов и вскрыл важную роль симметрии. Кроме того, будучи исследователем атомного магнетизма и коллегой П. Вейсса, Кюри, наверняка бы принял кристаллическую магнитную модель атома Ритца и мог однажды приложить эти знания к объяснению распадов ядер. Но Кюри погиб в 1906 г. от несчастного случая в возрасте 46 лет, и развитие структурного, кристаллического подхода к радиоактивности задержалось на век. Лишь сейчас к учёным постепенно приходит понимание огромной роли геометрической структуры частиц и ядер. А, ведь, ещё в Древней Греции Платон и Пифагор осознали большое значение геометрии и правильных геометрических тел для познания микромира. На фоне нынешних учёных, одурманенных бесструктурной теорией относительности и квантовой физикой, даже эти древние греки выглядят не мистиками, а последовательными материалистами.

§ 3.1 °Cистематизация и периодический закон элементарных частиц

Главный интерес химии — в изучении основных качеств элементов. А так как их природа нам ещё вовсе неизвестна и так как для них мы поныне твёрдо знаем только два измеряемые свойства: способность давать известные формы соединения и их свойство, называемое весом атома, то остаётся только один путь к основательному с ними ознакомлению — это путь сравнительного изучения элементов на основании этих двух свойств.

Д.И. Менделеев, "Основы химии" [98]

Поняв строение элементарных частиц, можно уже пытаться их систематизировать и строить таблицу элементарных частиц, аналогичную таблице Менделеева. Такая таблица необходима не только для систематизации частиц, но и для установления связи их свойств, для уточнения известных и предсказания ещё неизвестных характеристик (масс, времён и типов распада), а также для предсказания новых частиц, которые будут находиться в пустующих клетках. Чтобы систематизировать частицы, нужно выбрать параметр, по которому будем производить систематизацию. Этим параметром, несомненно, должна быть, как в таблице Менделеева, масса частиц. И свойства частиц должны с увеличением массы

периодически повторяться. Но в таблице Менделеева порядок расположения частиц задаётся всё же не самим весом, а числом протонов элемента, равным заряду ядра (вес же с увеличением атомного номера может в редких случаях и уменьшаться). Как было выяснено, подобно тому, как ядра всех элементов можно представить в виде сочетаний всего двух типов частиц, — протонов и нейтронов, так же и все элементарные частицы можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8–9) (Таблица 5). При этом, гаммоны аналогичны протонам, а октоны — нейтронам. И, раз гаммоны — это некий аналог протонов, то именно число гаммонов в частице должно задавать её положение в таблице. Как видно из этой новой, уточнённой таблицы, построенной на базе предыдущих, масса частиц и впрямь нарастает с увеличением числа образующих их гаммонов.

Видим, что в некоторых случаях одному и тому же числу гаммонов соответствует несколько частиц. Эти частицы объединяются физиками в семейства, поскольку они имеют близкие свойства и массы. А предложенное представление частиц в виде сочетаний гаммонов и октонов позволяет понять природу этих семейств. Частицы семейства объединяет как раз одинаковое число гаммонов, — в этом и состоит причина сходства их свойств и масс. Отличаются частицы лишь числом октонов, потому и массы частиц во всех семействах отличаются в среднем на 8,5 единиц. Это хорошо видно по последнему варианту таблицы, где семейства (дублеты , K, , D, триплет ) выделены полутоном. Ядерная физика объяснить таких стандартных скачков масс не могла. Частицы одного семейства, схожие свойствами и массами, — аналогичны изотопам одного элемента. Подобно тому, как у изотопов одинаковы числа протонов, но различны числа нейтронов, так же и частицы семейства, имея равные числа гаммонов, отличаются числом октонов.

Особенно интересным становится такое представление элементарных частиц и их масс в виде M66 x+8 у, если изобразить его на графике с осями xи y. Тогда каждая частица представится на плоскости точкой, координаты которой отвечают числу гаммонов xи октонов yв ней (Рис. 122). Этот план микромира открывает много интересных закономерностей. Так, он позволяет выявить дублеты и триплеты — группы частиц, расположенных одна над другой. Скажем, заряженный пион располагается точно над нейтральным, имея на один октон больше. Такие же пары, отличающиеся лишь одним октоном, составляют K +и K 0– мезоны, и 0– гипероны, D +и D 0– частицы. Причём, характерно, что обычно заряжены в этих дублетах частицы, содержащие нечётное число октонов, а нейтральны те, в которых число октонов чётно. Это говорит о том, что октоны в частицах сцеплены с электронами и позитронами, а, потому, их можно рассматривать как заряженные. Кроме того, видно, что отдельные дублеты располагаются через равные интервалы в 10 гаммонов. Числа гаммонов в этих дублетах равны: 4, 14, 34, 54 (а также 38 и 58). Вдобавок, эти дублеты укладываются на некую кривую в форме баллистической траектории. Поэтому, можно предсказать ещё три дублета (их частицы помечены знаками вопроса). В одном 24 гаммона и 8–9 октонов, в другом — 44 гаммона, а в третьем — 48. И, действительно, частицы с такими числами гаммонов существуют. Поэтому рядом с ними однажды могут быть открыты и дополняющие дублет частицы.

Рис. 122. Карта частиц микромира.

Можно уловить на карте частиц и другие закономерности. Так, частицы явно кучкуются, тяготеют к определённым узлам и линиям, образуют ячейки-параллелограммы. Впрочем, для дальнейшего анализа следует привлечь все прочие, включая малоизвестные, частицы, установить их место на карте, а также уточнить местоположение (массы и состав) уже известных. Предстоит выявить связь места частиц на карте с их свойствами. Если это окажется ключом к разгадке микромира, то позволит в дальнейшем предсказывать и уточнять массы и свойства частиц, как это некогда позволил сделать периодический закон Менделеева. Кроме периодичности дублетов, аналогия здесь ещё и в том, что, если по таблице Менделеева масса атома тем выше, чем больше в нём протонов, то и в нашей таблице масса частиц растёт к концу таблицы с увеличением числа гаммонов. Впрочем, возможны и исключения, какие есть в таблице Менделеева (у элементов Ar и K, Ni и Co, Te и I). Ну а частицы с равным числом гаммонов, но разными массами (дублеты, триплеты и мультиплеты) — аналогичны изотопам, у которых тоже одинаково число протонов, но различны массы. И, если ядро любого атома представляет собой некое сочетание протонов и нейтронов, то и любая элементарная частица — это некое сочетание октонов и гаммонов. Не случайно, и для элементов таблицы Менделеева составлена подобная же карта, на которой по осям отложено число протонов и нейтронов в ядрах [11, 135]. Карты сходны наличием полос и островков стабильности, вне которых сочетания частиц крайне неустойчивы. В обоих случаях, наиболее стабильные частицы располагаются вдоль монотонно нарастающей кривой, проходящей через ноль и постепенно уменьшающей крутизну.

Итак, построен в общих чертах план нижних этажей мироздания — путеводитель по микромиру. Это пока первая попытка систематизации на основе октогамонной модели частиц. Конечно, этот план ещё неточен, гипотетичен, нуждается в опытной проверке, доработке, а, может, и отбраковке (читатель волен составить собственный план). Но его преимущество в том, что, на базе немногих естественных гипотез, план позволяет единым образом описать все свойства микрочастиц (масса, заряд, магнитный момент, стабильность, типы распада), причём легко, наглядно, на базе классических моделей, — в пику квантмеху и теории относительности. В этом плане, как того и желал Ритц, электрические явления сведены к механическим и подобны ядерным.

Поделиться:
Популярные книги

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Эволюционер из трущоб. Том 6

Панарин Антон
6. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Эволюционер из трущоб. Том 6

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Сердце Дракона. Том 8

Клеванский Кирилл Сергеевич
8. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.53
рейтинг книги
Сердце Дракона. Том 8

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

К тебе через Туманы

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
К тебе через Туманы