Чтение онлайн

на главную - закладки

Жанры

Бегство от удивлений
Шрифт:

Вот, кажется, добрались до прямизны. Срезав ножом седло или шар, получаем поверхности, в которых линии кратчайших расстояний — наикратчайшие. Так как будто?

Но можно ли быть абсолютно уверенным, что линия на столе абсолютно прямая? И что сам стол плоский?

Кажется, вопросы надуманные. Кажется, плоскость потому и плоскость, что она прямее всех поверхностей.

В действительности дело обстоит сложнее. Все зависит от пространства, в котором стоит наш стол. Само пространство, с точки зрения геометра, вправе быть искривленным. И в конечном счете именно от кривизны пространства зависят кратчайшие расстояния.

Я —
блин

Для новичка это очень странные слова — «кривизна пространства». Чтобы привыкнуть к ним, ответим сначала на несколько риторических вопросов.

Как мы узнали, что глобус круглый?

Посмотрели на него со стороны, из окружающего пространства.

Как мы узнали, что классная доска прямая?

Взглянули на нее откуда-то сбоку, опять-таки из окружающего пространства.

А как узнать, прямое ли само пространство?

И на пространство «поглядеть сбоку»? Но это невозможно. Нельзя покинуть пространство, выйти из него, как из дома, чтобы полюбоваться на него издали. Как ни убегай из него, все равно останешься в нем же.

Выходит, нет способов определить, кривое пространство или прямое?

Попробуем все же поискать их. Попробуем исследовать пространство изнутри, не выходя из него. Но не сразу.

Я сперва расскажу, как решается аналогичная задача для поверхности: постараюсь узнать, какова поверхность, не глядя на нее «сбоку», а находясь непосредственно на ней.

Ради наглядности я готов «разбиться в лепешку». Буквально так.

Смотрите: я полностью теряю свой рост, объем, превращаюсь в бесконечно тонкий блин и оказываюсь либо на сфере, либо на седле, либо на плоскости — сам не знаю где.

В качестве этого поверхностного новосела я получаю от вас задание: не сходя с поверхности, определить, какова она.

Условия задания. Сперва — затрудняющие.

Допускается, что я — маленький блин, а поверхность большая, причем в сколь угодно малых участках она сколь угодно мало отличается от плоскости. Кроме того, я близорук, а потому могу обследовать, не сдвигаясь с места, только ближайшие участки поверхности. И вижу лишь то, что находится на ней.

А вот условия, облегчающие решение.

Ползать по поверхности мне разрешено, и сколь угодно далеко. Наконец, считается, что я разумный блин. Умею рассуждать и чертить геометрические фигуры.

Что же мне, блину, делать?

А вот что.

Пересечение параллельных

Я намечаю на поверхности две точки — А и В. Соединяю их туго натянутой, но не отделяющейся от поверхности ниткой. По этой нитке провожу линию. И называю ее прямой.

Основания для такого названия у меня есть: во- первых, линия идет по кратчайшему расстоянию между А и В, а во-вторых, из-за сугубой близорукости я вижу вокруг себя плоские участки поверхности. Это, естественно, наводит меня на предположение, что и вся она плоская.

Затем я ставлю на поверхности произвольную точку С, не лежащую на прямой АВ, и пытаюсь провести через нее прямые линии, которые нигде не пересекутся с моей первоначальной прямой.

Я усердно работаю. Ползаю туда-сюда, тяну нитки, провожу линии. В конце концов построение закончено. И я прихожу к одному из трех выводов:

Через точку С проходит только одна прямая линия, не пересекающаяся с АВ.

Удается построить сколько угодно таких линий (прямейших, но не прямых).

Нет ни одной прямейшей линии, которая, проходя через С, не пересекалась бы с АВ.

В первом

случае моя поверхность — наверняка плоскость. Во втором — седло или какой-нибудь граммофонный раструб. В третьем — сфера либо что-нибудь вроде яичной скорлупы.

Вот смотрите сами:

При взгляде «со стороны» лишь для плоскости оправдалось как будто название «прямая» в применении к кратчайшей линии. На непрямых же поверхностях кратчайшие расстояния отмерились по кривым. Вслед за геометрами я называю их геодезическими (сюда относятся, например, экватор и меридианы глобуса, а параллели не относятся: не по ним отмериваются на земном шаре кратчайшие расстояния).

Что такое метрика

Я все еще блин. Побывал на сфере и седле, теперь переведен на плоскость. Хлопочу о возврате высоты и объема, но пока безуспешно. И от нечего делать занимаюсь геометрией. Это тем более любопытно, что мне на плоскость прислали два отличных инструмента — транспортир и мерную рулетку. Могу измерять длины и углы (по-прежнему — мгновенно, то есть в рамках классической физики).

Отправной пункт моих рассуждений — тот самый постулат о единственности прямой, не пересекающейся с данной прямой, по которому без всяких доказательств устанавливается, что поверхность — плоскость. В давние времена великий греческий геометр Евклид вывел из этого постулата всю геометрию плоскости — планиметрию.

Следом за Евклидом я строю углы, треугольники, квадраты, делаю всевозможные отсчеты, доказываю теоремы. Постепенно я убеждаюсь, что на плоскости действует строгая система правил измерения расстояний. Геометры называют эти правила метрикой.

Метрические теоремы — не новинка для любого восьмиклассника. Главная из них — теорема Пифагора, знаменитые в поколениях школяров всех стран и наций «пифагоровы штаны». Теорема утверждает: в прямоугольном треугольнике сумма квадратов меньших сторон (катетов а и b) обязательно равна квадрату большей стороны (гипотенузы S):

S2 = а2 +b2

Я, блин, горжусь, что сумел процитировать эту формулу по памяти, не заглядывая в учебник.

Кроме теоремы Пифагора, предметом моей гордости служит доказательство еще одного важного утверждения из школьной программы: в любом треугольнике сумма углов строго равна двум прямым. Ни больше ни меньше. Надеюсь, и эту теорему вы не забыли.

Примеряем „пифагоровы штаны"

Один рассеянный ученик по ошибке принес на урок геометрии вместо тетради футбольный мяч. Пришлось ему на мяче чертить всевозможные чертежи. Но вышла незадача: углы треугольников никак не складывались в два прямых. Выходило больше. А когда задали задачку на теорему Пифагора, ученик-футболист аккуратно составил из геодезических линий прямоугольный треугольник, измерил стороны, сложил квадраты катетов — и получилось больше, чем квадрат гипотенузы! «Пифагоровы штаны» оказались велики для футбольного мяча.

Поделиться:
Популярные книги

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Умеющая искать

Русакова Татьяна
1. Избранница эльты
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Умеющая искать

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия