Беспилотная авиация: терминология, классификация, современное состояние
Шрифт:
A = (A1 ,A2 ,…,An) – множества действий компонентов, включая алгоритмы решения типовых задач из множества Т;
J = (J1,J2 ,…,Jn ) – множества, характеризующие каждый компонент в качестве исполнителя подзадач из множества Т. При этом необходимо учесть летно-технические характеристики
Решаемые задачи:
– построение решения поставленной перед АК задачи в виде совокупности подзадач, решаемых каждым ЛА в составе комплекса;
– составление плана полета для каждого ЛA, а также перечня действий в определенных точках с учетом топливновременных ограничений;
– согласование движения нескольких ЛА в составе АК, если это необходимо.
Критерий качества управления на этом уровне можно сформулировать как оценку решения каждым БПЛА поставленной перед ним задачи с определенным уровнем эффективности:
I(2) = {T,J}
Следующие два уровня реализуются непосредственно на борту ЛА. Соответственно, перечисленные ниже характеристики могут иметь количественные различия в зависимости от типоразмера и выполняемой ЛА задачи.
Траекпгорный уровень управления содержит подробное описание движения ЛА, в том числе и возможный разброс значений основных параметров при их выполнении. Таким образом, модели этого уровня содержат следующие сведения:
– математическое описание пространственного движения ЛА как материальной точки;
– предельные значения скоростей и эйлеровых углов при выполнении типовых маневров;
– требования к точности выдерживания заданной траектории;
– требования к выдерживанию определенных дистанций между несколькими одновременно выполняющими полет ЛА.
Модель компонента АК (летательного аппарата), как материальной точки, выполняющей определенные действия в окружающей среде, можно представить следующим образом:
Mod(0) = {Sj ,Aj ,E}, (1.3)
где Sj=(s1j,s2j,…,smj ) – параметры состояния компонента
Rj , j = 1,n
т – количество переменных, описывающих состояние компонента;
Aj =(a1j,a2j,…,ahj ) – действия, которые может выполнять компонент комплекса Rj для изменения окружающей среды и собственного состояния;
h – количество таких действий.
Решаемые задачи:
– расчет конкретных значений параметров типовых участков траекторий исходя из ЛTX ЛA и специфики решаемой задачи;
– предотвращение опасных сближений
– обеспечение выполнения запланированных действий на каждом участке траектории.
Эффективность управления на этом уровне можно сформулировать как отработку заданных действий за заданное время с заданной точностью (Q):
I(3) = {A,Q,t}.
На нижнем уровне управления обеспечивается отработка всех действий ЛА, рассчитанных на траекторном уровне. Соответственно, модель этого уровня содержит:
– математическое описание пространственного движения ЛА как твердого тела;
– законы управления отдельными параметрами движения ЛА;
– предельные значения некоторых величин, подлежащих ограничению.
Модель ЛА, как объекта управления, можно представить в следующем виде:
Mod(4) = {Uj ,Xj,Sj} (1.4)
где Uj – множество управляющих воздействий;
Xj – множество выходных параметров.
Решаемые задачи:
– формирование управляющих воздействий, передающихся для отработки в САУ;
– ограничение предельных значений заданных величин.
Задачи этого уровня решаются традиционными методами теории автоматического управления, поэтому качество их решения может быть выражено показателями качества переходных процессов всех задействованных САУ:
I(4) = {δ,tрег,σ},
где δ – перерегулирование;
tрег – время регулирования;
σ – статическая точность.
Источники информации по главе 1:
1. Портал новостей по аэрокосмической и оборонной тематике. http: // www.shephardmedia.com/news/uv-online
2. The Free Dictionary. thefreedictionary. com/Unmanned+Aerial+ Vehicle
3. Международный портал по беспилотным системам UVS-info.. uvs-info. com
4. Fitzpatrick B.G. Max Plus Decision Processes in Planning Problems for Unmanned Air Vehicle Teams // Recent Advances in Research on Unmanned Aerial Vehicles / Fahroo F. et al. (Eds.). Springer-Verlag, Berlin, Heidelberg, 2013.-P. 31.
5. Marks P. From sea to sky: Submarines that fly. 05 July 2010 // Портал New Scientist,to-sky-submarines-that-fly. html#. Ud2xGqxzcba
6. Transforming unmanned aerial-to-ground vehicle/ US Patent 8205820. Publ. Jun 26, 2012.
7. Yamauchi B., Rudakevych P. Griffon: A Man-Portable Hybrid UGV/UAV // Industrial Robot, vol. 31, no. 5, pp. 443-450, 2004.
8. Ijspeert A.J., Crespi A., Ryczko D., Cabelguen J.-M. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model // Science, 9, March 2007. – Pp. 1416-1420.