Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:
Если сложить их друг на друга и попытаться нарисовать четырёхмерную версию АДС, получится ужасная мешанина.
Мир в шкатулке
Прекращение испарения чёрных дыр — достойная причина для изучения физики внутри шкатулки. Но идея мира в шкатулке гораздо интереснее. Подлинная цель состоит в понимании голографического принципа и доведении его до математической точности. Вот как я объяснял голографический принцип в главе 18: «Трёхмерный мир нашего обыденного опыта — Вселенная, заполненная галактиками, звёздами, планетами, домами, камнями и людьми, — это голограмма, образ реальности, закодированной на далёкой двумерной поверхности. Этот новый закон
Отчасти неточность формулирования голографического принципа связана с тем, что предметы могут проходить через границу. В конце концов, это ведь воображаемая математическая поверхность безо всякой реальной материи. Сама возможность для объектов входить в рассматриваемую область и покидать её затуманивает смысл слов «всё, находящееся внутри некоторой области пространства, можно описать посредством битов информации, расположенных на её границе». Но мир в шкатулке с идеально непроницаемыми стенами избавлен от этой проблемы. Новая формулировка будет такой:
Всё, находящееся внутри шкатулки с непроницаемыми стенами, можно описать посредством битов информации, хранящихся в пикселах на её стенах.
Во время чилийской автобусной экскурсии 1989 года я не понял, почему Клаудио Тейтельбойм так восхищался антидеситтеровским пространством. Чёрные дыры в шкатулке — ну и что? Мне понадобилось восемь лет, чтобы уловить суть, — восемь лет и ещё один южноамериканский физик, на этот раз аргентинский.
Удивительные открытия Малдасены
Хуан Малдасена — полная противоположность Клаудио Тейтельбойму. Он невысок и гораздо хладнокровнее. Я не могу себе представить его гоняющим на автомобиле по Сантьяго в поддельной военной форме. Но как у физика у него нет недостатка в храбрости. В 1977 году он поставил себя под удар, сделав невероятно смелое заявление, которое казалось почти таким же сумасшедшим, как моя дикая поездка с Клаудио. Фактически Малдасена доказывал, что два математических мира, которые кажутся совершенно непохожими, на самом деле являются в точности и одним и тем же. Один мир имел четыре пространственных измерения и одно временное (4 + 1), другой был (3 + 1) — мерным и больше напоминал мир нашего повседневного опыта. Я возьму на себя смелость упростить эту историю, с тем чтобы её было проще визуализировать, и в каждом случае уменьшу количество измерений на одно. Поэтому я буду говорить, что некоторая воображаемая версия Флэтландии — (2 + 1) — мерного мира — в определённом смысле эквивалентна антидесситтеровскому миру с (3 + 1) измерениями.
Как такое вообще возможно? Самое явное свойство пространства — это количество его измерений. Неспособность распознавать размерность пространства означала бы крайне опасную степень нарушения восприятия. Безусловно, нельзя перепутать два измерения с тремя, находясь в здравом уме. По крайней мере, так кажется. Путь, который привёл Малдасену к его открытию, был запутанной и извилистой тропинкой, которая проходила через экстремальные чёрные дыры, D-браны и нечто, называемое матричной теорией [150] , и в конце приводила к голографическому принципу.
150
Матричная теория в этом контексте не имеет ничего общего с S-матрицей. Это теория предшествовала открытию Малдасены и была с ним тесно связана, и она тоже включала загадочный рост размерностей. Это был первый пример математической связи, подтверждающий голографический принцип. Матричная теория была открыта Томом Бэнксом, Вилли Фишлером, Стивом Шейкером и мной в 1996 году.
Отправной точкой были D-браны Полчински. Напомню, что D-брана — это материальный объект, который в зависимости от размерности может быть точкой, линией, поверхностью или объёмом, заполняющим пространство. Главное свойство, отличающее D-браны от всего остального, состоит в том, что на них могут заканчиваться фундаментальные струны. Для определённости давайте сосредоточимся на D2-бpaнax [151] . Представьте себе плоскую двумерную поверхность, плавающую в трёхмерном пространстве, подобно магическому паркету. Открытые струны могут присоединяться
151
В своей оригинальной работе Малдасена концентрировался на случае с четырёхмерным пространством. Его можно назвать (4+1) — мерным АДС. Причина выбора четырёхмерного пространства вместо обычных трёх измерений — чисто техническая и не важна для этой главы. Но она имеет отношение к части эпилога.
D-браны могут существовать по отдельности, но они липкие. Если аккуратно их сблизить, они сцепятся и образуют составную брану из нескольких слоёв, как на следующем рисунке.
Я нарисовал D-браны на некотором расстоянии друг от друга. Но когда они сливаются, промежуток исчезает. Группу слипшихся вместе D-бран называют D-бранной стопкой.
Свойства открытых струн, движущихся по D-бранной стопке, богаче и разнообразнее, чем у струн, движущихся по одиночной D-бране. Два конца струны могут присоединиться к разным элементам стопки, как если бы два конька двигались по двум немного разным уровням. Чтобы различать браны, им можно дать имена. Например, в нарисованной выше стопке можно назвать браны красной, зелёной и синей.
Концы струн, которые катятся по D-бранной стопке, должны быть всегда присоединены к D-бране. Например, струна может быть обоими концами присоединена к красной бране. Тогда это будет красно-красная струна. Аналогично могут быть сине-синие и зелёно-зелёные струны. Но возможно также, что два конца струны присоединены к разным бранам. Так получаются красно-зелёные струны, красно-синие и т. д. Всего имеется девять разных возможностей для движения струн по этой D-бранной стопке.
Интересные вещи начинаются, когда к бранам присоединено несколько струн.
Струны на Б2-бранной стопке очень похожи на обычные частицы, но только в мире, имеющем два пространственных измерения. Они взаимодействуют друг с другом, рассеиваются при столкновениях и оказывают силовое воздействие на находящиеся поблизости струны. Одна струна может распасться на две. На следующей серии рисунков показано, как струна на одиночной бране разделяется и превращается в две струны.
Точка на исходной струне соприкасается с браной, что позволяет струне разделиться, но непременно так, чтобы все концы были присоединены к бранам. Предыдущий рисунок можно также просматривать снизу вверх, и тогда получится, что пара струн сливается и образует одну.
А вот последовательность кадров со струнами на стопке из трёх D-бран. Здесь показано, как красно-зелёная струна сталкивается с зелёно-синей. Две струны сливаются и образуют одну красносинюю струну.
Красно-красная струна не может слиться с зелёно-зелёной, поскольку их концы никогда не соприкоснутся.
Не правда ли, мы уже видели нечто подобное? Ну конечно, если вы прочли главу 19. Правила, управляющие поведением струн, присоединённых к стопке D-бран, в точности такие же, что управляют глюонами в квантовой хромодинамике (КХД). В главе 19 я объяснял, что глюон подобен небольшому линейному магниту с двумя концами, каждый из которых помечен своим цветом. Сходство на этом не заканчивается. Приведённый выше рисунок, показывающий соединение двух струн в одну, очень похож на диаграмму глюонного узла в КХД.