Чтение онлайн

на главную - закладки

Жанры

Большая энциклопедия техники

Коллектив авторов

Шрифт:

В НИИ транспортного машиностроения предложили концепцию создания лунохода и предполагаемый технический облик, а также основные параметры и проблемы, связанные с созданием самоходного аппарата. Все эти данные были переданы в конструкторское бюро им. С. А. Лавочкина, главным конструктором которого в то время являлся Г. Н. Бабакин. Неизвестны были лунный грунт, влияние гравитации на движение, как себя поведут тяжелонагруженные пары трения в вакууме.

Для моделирования необходимых условий было создано уникальное оснащение, стенды, на которых моделировались условия работы на Луне. Был создан специальный полигон с грунтовым покрытием, который должен был имитировать поверхность Луны.

Первый советский луноход состоял из приборного отсека

и колесного шасси. Его масса составляла 756 кг. Корпус герметичного приборного отсека, выполненного в виде конуса, был изготовлен из магниевых сплавов, которые характеризуются высокой прочностью и легкостью. Верхняя часть отсека выполняла терморегуляционные функции, закрывая на время лунной ночи радиатор в целях предотвращения излучения тепла из отсека. На внутренней стороне крышки были размещены солнечные батареи, которые обеспечивали подзарядку аккумуляторов, питающих электроэнергией бортовую аппаратуру.

Бортовой радиокомплекс обеспечивал двухстороннюю связь исследовательского аппарата и Центра управления на Земле. Система малокадрового телевидения передавала на Землю телевизионные изображения местности, которые позволяли с Земли управлять движением лунохода. Прекращение работы самоходного аппарата было вызвано выработкой ресурсов изотопного источника тепла, установленного на его борту. Это произошло в течение 11-й лунной ночи, с 15 по 30 сентября 1971 г., после чего аппарат поставили на горизонтальную площадку, которая обеспечила многолетнее проведение лазерной локации с поверхности Земли при помощи уголкового отражателя. «Луноход-2» был доставлен автоматической станцией «Луна-21». Были усовершенствованы бортовые системы и немного изменен состав научной аппаратуры. Это позволило повысить маневренность и выполнить больший объем научных исследований. В течение первого лунного дня «Луноход-2» передавал панорамы места посадки и изображения лунного ландшафта.

Американцами на Луне использовались самоходные транспортные средства LRV. Эти средства предназначены для управления экипажем, который могут составлять два космонавта. LRV использовался во время Лунных экспедиций Apollo-15, Apollo-16, Apollo-17. Конструкция американских луноходов предусматривает возможность загрузки лунного грунта массой не более 27 кг. Луноход достаточно компактен. Процесс складывания происходит следующим образом: передняя и задняя части ложатся на среднюю, а колеса убираются в пространство между секциями.

Луноход оборудован четырехколесным движителем с индивидуальным приводом колес. Энергопитанием луноход обеспечивают две серебряно-цинковые аккумуляторные батареи. Каждая из батарей обеспечивает суммарный пробег лунохода не менее 180 км. Американские космонавты Скотт и Ирвин были первым экипажем лунохода LRV. В задачи космонавтов входили геологические исследования, проведение сейсмических замеров, фотографирование местности и сбор образцов горных пород.

Магнитогазодинамический двигатель

Магнитогазодинамический двигатель – электрический ракетный двигатель, в котором в качестве рабочего тела используется газ. Разгон рабочего тела осуществляется под действием магнитного поля Земли. По режиму работы представляет собой стационарный электрический ракетный двигатель, т. е. способной работать в непрерывном режиме. Разгон рабочего тела производится в прямоугольном канале. Канал изготовлен таким образом, что две его стенки представляют собой электроды, а две другие стенки являются изоляторами. В итоге мы получаем электрическое поле, под действием которого происходит возбуждение электрического тока внутри плазмы.

Внешняя магнитная система, полюса которой расположены за стенками электроизоляторов, обеспечивает наличие в ускорительном канале магнитного поля. Ориентация полей перпендикулярная. Ресурс магнитогазодинамических двигателей зависит от стенок канала, так как они во время работы подвергаются большим тепловым нагрузкам. Для

изготовления электродных стенок обычно используют вольфрам, а керамические стенки являются изоляторами.

Для снижения тепловой нагрузки в конструкции двигателя предусмотрено охлаждение регенеративным или транспирационным способом.

Магнитоплазмодинамический двигатель

Магнитоплазмодинамический двигатель – электрический ракетный двигатель, в котором роль рабочего тела выполняет плазма. Магнитное поле Земли, взаимодействуя с электрическим током в плазме, обусловливает возникновение силы Лоренца, которая, в свою очередь, обеспечивает разгон рабочего тела. Электрические ракетные двигатели, использующие для разгона рабочего тела магнитное поле, отличаются тем, что создают малые ускорения, но их преимуществом являются хорошие показатели продолжительности непрерывной работы. В 1988 г. был проведен эксперимент под названием «Плазма», в ходе которого проверялась эффективность использования плазменных электрических ракетных двигателей на искусственных спутниках Земли. Помимо этого, исследовалось помеховое воздействие плазменного двигателя на работу аппаратуры космического аппарата и влияние на радиосвязь. При сравнении с другими электрическими ракетными двигателями сильноточный плазменный двигатель, работающий в стационарном режиме, имеет ряд преимуществ. Он может обеспечивать высокий уровень тяги при КПД не меньше 50% и обеспечивать скорость истечения порядка 10 км/с. Если же в качестве источника энергии использовать солнечную батарею, что технически реализуемо, то это дает серьезное преимущество перед остальными двигателями. Перечисленные преимущества магнитоплазмодинамического двигателя позволяют в перспективе рассматривать его в качестве маршевого ракетного двигателя, особенно если космический аппарат будет оборудован солнечными батареями либо другими низковольтными энергоустановками мощностью не менее 100 кВт.

Малая орбитальная станция

Малая орбитальная станция – космический аппарат, который рассчитан на долговременное пребывание в космическом пространстве на околоземной орбите или на орбитах вокруг других планет.

Первые успешные эксперименты по автоматической стыковке космических объектов открыли перспективы создания больших космических станций и их обслуживания. Первым шагом к созданию орбитальной станции стала разработка серии многоместных пилотируемых космических кораблей «Союз». Эта программа предполагала осуществлять исследование околоземного космического пространства и создание обитаемых орбитальных станций. Промежуточным итогом работы ученых и конструкторов стала первая экспериментальная орбитальная станция. 16 января 1969 г. была образована пилотируемая экспериментальная станция, на борту которой находился экипаж из четырех человек. После выведения на орбиту двух кораблей серии «Союз», это были «Союз-4» и «Союз-5», была проведена их стыковка в космическом пространстве. В процессе сближения «Союз-5» был «пассивен», а «Союз-4», снабженный активной системой стыковки, осуществлял стыковку. Нельзя не упомянуть, что начиная с расстояния в 100 м управление космическим кораблем осуществлял летчик-космонавт В. А. Шаталов. Стыковка была выполнена безукоризненно. Суммарный вес станции составил 12 924 кг. Станция имела четыре отдельных жилых помещения, и в результате стыковки специальных электрических разъемов была создана общая электрическая сеть.

Во время работы станции были проведены разнообразные научно-технические, медико-биологические исследования. Кроме того, космонавтами осуществлялись наблюдения за объектами земной поверхности и небесными светилами. Впервые космонавтами был осуществлен выход в открытый космос, продолжительностью 37 мин, в результате чего экипажи (космонавты А. С. Елисеев и Е. В. Хрунов) перешли в космический корабль «Союз-4». Время «жизни» станции составило 4 ч 34 мин, после чего корабли были расстыкованы и продолжили раздельный полет.

Поделиться:
Популярные книги

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Наука и проклятия

Орлова Анна
Фантастика:
детективная фантастика
5.00
рейтинг книги
Наука и проклятия

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Измена. Право на семью

Арская Арина
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Измена. Право на семью

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3