Большая книга занимательных наук
Шрифт:
– Причем тут музыка?.. – начал было молодой математик и осекся. На лице его выразился испуг. Он сорвался с места, бросился к окну и высунул голову.
– Так и есть! – донесся его унылый возглас. – Проиграно пари! Прощай мой велосипед…
Через минуту всем стало ясно, в чем дело. Мимо окон проходил батальон солдат.
Высота башни
В вашем городе есть достопримечательность – высокая башня, высоты которой вы, однако не знаете. Имеется у вас и фотографический снимок башни на почтовой карточке. Как может этот снимок помочь вам узнать высоту башни?..
Чтобы по снимку определить высоту башни в натуре, нужно прежде всего
Сделав это, вы рассуждаете так.
Фотография башни и ее подлинные очертания геометрически подобны друг другу. Следовательно, во сколько раз изображение высоты больше изображения основания, во столько же раз высота башни в натуре больше длины ее основания. Первое отношение равно 95: 19, т. е. 5; отсюда заключаете, что высота башни больше длины ее основания в 5 раз и равна в натуре 14 х 5 = 70 м.
Итак, высота городской башни 70 м.
Надо заметить, однако, что для фотографического определения высоты башни пригоден не всякий снимок, а только такой, в котором пропорции не искажены, как это бывает у неопытных фотографов…
Кирпичик
Строительный кирпич весит 4 кг. Сколько весит игрушечный кирпичик из того же материала, все размеры которого в 4 раза меньше?..
Ответ, что игрушечный кирпичик весит 1 кг, т. е. всего вчетверо меньше, грубо ошибочен. Кирпичик ведь не только вчетверо короче настоящего, но и вчетверо уже да еще вчетверо ниже, поэтому объем и вес его меньше в 4 х 4 х 4 = 64 раза. Правильный ответ, следовательно, таков: игрушечный кирпичик весит 4000: 64 = 62,5 г…
Великан и карлик
Во сколько примерно раз великан ростом в 2 м тяжелее карлика ростом в 1 м?..
Вы теперь уже подготовлены к правильному решению этой задачи. Так как фигуры человеческого тела приблизительно подобны, то при вдвое большем росте человек имеет объем не вдвое, а в 8 раз больший. Значит наш великан весит больше карлика раз в 8.
Самый высокий великан, о котором сохранились сведения, был один житель Эльзаса ростом в 275 см – на целый метр выше человека среднего роста. Самый маленький карлик имел в высоту меньше 40 см, т. е. был ниже исполина-эльзасца круглым счетом в семь раз. Поэтому если бы на одну чашку весов поставить великана-эльзасца, то на другую надо бы для равновесия поместить 7 x 7 x 7 = 343 карлика – целую толпу…
Два арбуза
На колхозном рынке продаются два арбуза разных размеров. Один на четвертую долю шире другого, а стоит он в 11/2 раза дороже. Какой из них выгоднее купить?..
Объем большого арбуза превышает объем меньшего в
почти вдвое. Выгоднее, значит, купить крупный арбуз: он дороже только в полтора раза, а съедобного вещества в нем больше раза в два.
Почему же, однако, продавцы просят за такие арбузы обычно не вдвое, а только в полтора раза больше? Объясняется это просто тем, что продавцы в большинстве случаев не сильны в геометрии. Впрочем, не сильны в ней и покупатели, зачастую отказывающиеся из-за этого от выгодных покупок. Можно смело утверждать, что крупные арбузы выгоднее покупать, чем мелкие, потому что они расцениваются всегда ниже их истинной стоимости; но большинство покупателей об этом не подозревают.
По той же причине всегда выгоднее покупать крупные яйца, нежели мелкие, – если только их не расценивают по весу…
Две кастрюли
Имеются две медные кастрюли одинаковой формы
Во сколько раз она тяжелее?..
Обе кастрюли – тела, геометрически подобные. Если большая кастрюля в 8 раз вместительнее, то все ее линейные размеры в два раза больше: она вдвое выше и вдвое шире по обоим направлениям. Но раз она вдвое выше и шире, то поверхность ее больше в 2 х 2, т. е. в 4 раза, потому что поверхности подобных тел относятся, как квадраты линейных размеров. При одинаковой толщине стенок вес кастрюли зависит от величины ее поверхности. Отсюда имеем ответ на вопрос задачи: большая кастрюля вчетверо тяжелее меньшей…
На морозе
На морозе стоят взрослый человек и ребенок, оба одетые одинаково.
Кому из них холоднее?..
Эта задача, на первый взгляд вовсе не математическая, решается в сущности тем же геометрическим рассуждением, какое применено было в предыдущей задаче.
Прежде чем приступить к ее решению, рассмотрим сходную с ней, но несколько более простую задачу.
Два котла (или два самовара), большой и малый, одинакового материала и формы наполнены кипятком. Какой остынет скорее?
Вещи остывают главным образом с поверхности: следовательно, остынет скорее тот котел, в котором на каждую единицу объема приходится большая поверхность. Если один котел в п раз выше и шире другого, то поверхность его больше в п2 раз, а объем – в п3; на единицу поверхности в большом котле приходится в п раз больший объем. Следовательно, меньший котел должен остыть раньше.
По той же причине и ребенок, стоящий на морозе, должен зябнуть больше, чем одинаково одетый взрослый: количество тепла, возникающего в каждом куб. см тела, у обоих приблизительно одинаково, но остывающая поверхность тела, приходящаяся на каждый куб. см, у ребенка больше, чем у взрослого.
В этом нужно видеть также причину того, что пальцы рук или нос зябнут сильнее и отмораживаются чаще, чем другие части тела, поверхность которых не столь велика по сравнению с их объемом.
Сюда же, наконец, относится и следующая задача:
Почему лучина загорается скорее, чем толстое полено, от которого она отколота?
Так как нагревание происходит с поверхности и распространяется на весь объем тела, то следует сравнить поверхность и объем лучины (например, квадратного сечения) с поверхностью и объемом полена той же длины (и тоже квадратного сечения), чтобы определить, какой величины поверхность приходится на каждый куб. см древесины в обоих случаях. Если толщина полена в 10 раз больше толщины лучины, то боковая поверхность полена больше поверхности лучины тоже в 10 раз, объем же его больше объема лучины в 100 раз. Следовательно, на каждую единицу поверхности в лучине приходится вдесятеро меньший объем, чем в полене: одинаковое количество тепла нагревает в лучине вдесятеро меньше вещества, – отсюда и более раннее воспламенение лучины, чем полена, от одного и того же источника тепла. (Ввиду дурной теплопроводности дерева указанные соотношения следует рассматривать лишь как грубо приблизительные; они характеризуют лишь общий ход процесса, а не количественную сторону…)
Из книги «Занимательные задачи и опыты»
Почему не выливается?
Описываемый далее опыт – один из самых легких для исполнения. Это первый физический опыт, который я проделал в дни моей юности. Наполните стакан водой, покройте его почтовой карточкой или бумажкой и, слегка придерживая карточку пальцами, переверните стакан вверх дном. Теперь можете руку убрать: бумажка не отпадет, вода не выльется, если только бумажка совершенно горизонтальна.