Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ДА)
Шрифт:

При достаточно высоких давлениях, но температурах ниже температуры вырождения вещество переходит в вырожденное состояние, при котором энергия и давление не зависят от температуры (см. Вырожденный газ , Вырождения температура ).

Ниже описываются некоторые свойства газов, жидкостей и твёрдых тел в экспериментально доступном диапазоне Д. в. При Д. в. до 30—50 кбар исследуются вещества во всех агрегатных состояниях. При больших Д. в. главным объектом физических исследований является твёрдое тело.

Физические свойства индивидуального вещества в твёрдом состоянии могут быть разделены на три основные группы. К 1-й группе относят свойства, связанные с т. н. явлениями на молекулярном уровне: движением атомов (молекул), точечных дефектов в кристаллах , дислокаций и т. д. Этими явлениями определяются, например, диффузия , фазовые переходы , разрушение под действием механических нагрузок и ряд др. физических свойств твёрдого тела. Ко 2-й группе относят свойства, определяемые характером основного (невозбуждённого —

см. Твёрдое тело ) состояния кристалла, т. е. взаимным расположением атомов, средним расстоянием между ними и колебаниями кристаллической решётки при абсолютном нуле температуры: упругость , сжимаемость , электропроводность металлов, ферромагнетизм . К 3-й группе — свойства, связанные в первую очередь с видом возникающих в твёрдом теле элементарных возбуждений — квазичастиц (фононов , экситонов и др.) и их взаимодействием (например, зависимость сжимаемости, электропроводности, магнитных эффектов от температуры, магнитного поля, электромагнитного излучения и др. внешних параметров). Теоретическое описание последней группы свойств возможно лишь для тел, имеющих температуру, близкую к абсолютному нулю, поэтому большое значение имеют опыты при Д. в. и сверхнизких температурах. Микроскопическая теория влияния Д. в. на первые две группы свойств развита недостаточно, но имеется довольно обширный экспериментальный материал.

На рис. 3—6 приведены зависимости от давления объёма (плотности) веществ в газообразном, жидком и твёрдом состояниях. После снятия Д. в. первоначальный объём газов, жидкостей и твёрдых тел (не содержащих пор и посторонних включений) восстанавливается. Свойство тел обратимо изменять свой объём под давлением называется сжимаемостью или объёмной упругостью. Сжимаемость обусловлена действием межатомных сил и поэтому является важнейшей характеристикой вещества. Наибольшей сжимаемостью обладают газы. Плотность газов под Д. в. в 10 кбар увеличивается в сотни раз (при комнатной температуре), жидкостей в среднем на 20—30%, твёрдых тел — на 0,5—2%. С ростом давления сжимаемость уменьшается — кривые на графиках становятся более пологими. При 30—50 кбар сжимаемость большинства исследованных жидкостей различается не более чем на 10% и приближается (при не очень высоких температурах) к сжимаемости твёрдой фазы. Наименее сжимаемы вещества с наиболее сильной межатомной связью (например, алмаз, а из металлов — тугоплавкие иридий и рений) (рис. 5, 6 ). При наибольшем достигнутом динамическом Д. в. (~3 (104 кбар ) плотность железа и свинца увеличивается соответственно в 2,5 и 3,3 раза. Простые вещества (химические элементы), имеющие больший атомный объём, имеют и большую сжимаемость. Атомный объём является периодической функцией атомного номера Z элемента (см. Атом ). Поэтому с ростом давления периодичность зависимости атомного объёма (и сжимаемости) от Z сглаживается (рис. 7 ), что отражает изменение строения внешних электронных оболочек атомов и свидетельствует об изменении физических и химических свойств элементов под Д. в.

Увеличение плотности и уменьшение сжимаемости вещества под Д. в. приводит к росту скорости упругих волн (скорости звука): у металлов, ионных кристаллов при 10 кбар — на несколько процентов, у газов — в несколько раз. При динамическом Д. в. в несколько тыс. кбар скорость упругих волн в металлах возрастает примерно в 2 раза. С увеличением плотности газов и жидкостей растет их вязкость. В отличие от большинства др. свойств, зависимость вязкости от давления имеет положительную производную: при последовательном росте Д. в. на определённую величину увеличение вязкости возрастает (рис. 8 ).

У кристаллических тел Д. в. увеличивает пластичность: при одноосном растяжении (сжатии) разрушение наступает, как правило, после большей деформации, чем при атмосферном давлении. Характер излома малопластичных металлов под Д. в. меняется от хрупкого к вязкому (рис. 9 ), несколько увеличивается и прочность. Это объясняется тем, что Д. в. способствует залечиванию дефектов строения (микротрещин и др.) в процессе пластического деформирования кристаллических тел. При сдвиге под Д. в. у металлов и ионных кристаллов с ростом давления наблюдается рост сопротивления сдвигу (например, y NaCI в интервале 10—50 кбар примерно в 3,3 раза), а у горных пород и стекол наблюдаются разупрочнение, потеря сплошности и др. явления.

Резкое изменение физических свойств, например плотности (рис. 10 ) или электрического сопротивления (рис. 11 ), наблюдается у твёрдых тел при фазовых переходах под Д. в. (полиморфных превращениях, плавлении).

Из двух кристаллических модификаций одного и того же вещества большей плотностью обладает модификация, устойчивая при более высоком давлении. Разница в плотности двух модификаций может достигать 30—40%, но в большинстве случаев она меньше. В отличие от плотности, электрическое сопротивление металлов при полиморфных переходах может как уменьшаться, так и возрастать. Скачки электрического сопротивления некоторых металлов (например, Bi и Ba, см. рис. 11 ) при полиморфных переходах используются для градуировки аппаратуры Д. в. (см. ниже). Обычно при снижении Д. в. происходит обратное превращение и вещество возвращается в менее плотную модификацию. Методом рентгеновского структурного анализа установлено, что, как правило, под Д. в. образуются структуры, известные для др. элементов и соединений при нормальных условиях. Многие

полиморфные превращения осуществляются при совместном воздействии Д. в. и высоких температур. В этих случаях более плотную модификацию часто удаётся сохранить в нормальных условиях, применив закалку под Д. в. Для этого сначала резко снижают температуру, а затем давление (до атмосферного). Закалкой пользуются, в частности, при синтезе алмаза, боразона, многих минералов.

По экспериментальным данным о давлении фазовых переходов при различных температурах строят т. н. фазовые диаграммы, изображающие области стабильности кристаллических модификаций и расплава индивидуальных веществ (рис. 12 ). температура плавления (Тпл ) большинства веществ возрастает с давлением (рис. 13 ). У NaCI и KCl, которые при атмосферном давлении плавятся при температуре около 800°C, при динамическом сжатии плавление наблюдалось при 3200°C (540 кбар ) и 3500°C (330 кбар ) соответственно. Весьма значительно повышение температуры плавления с давлением у органических веществ; у бензола, например, при атмосферном давлении Тпл = 5°С, а при 11 кбарТпл = 200°C. Известны т. н. аномальные вещества (H2 O, Bi, Ga, Ge, Si и др.), у которых Тпл в определённом интервале Д. в. понижается с ростом давления, т. к. жидкая фаза у этих веществ плотнее соответствующей ей кристаллической модификации. После полиморфного перехода с образованием более плотной кристаллической модификации ход кривой плавления этих веществ становится нормальным (у воды, например, выше 2 кбар, у Bi ~ 18 кбар ).

Электрическое сопротивление ряда металлов под Д. в. уменьшается (у Со, Ag, A1 и др. на 15—20% при 100 кбар, см. рис. 14 ). Качественно это объясняется уменьшением амплитуды колебаний атомов в кристаллической решётке и соответствующим уменьшением рассеяния решёткой электронов проводимости. У щелочных, щёлочноземельных, редкоземельных металлов зависимость электрического сопротивления от Д. в. сложнее (см. рис. 11 ), что обусловлено изменением под действием давления формы Ферми поверхности и перекрытием энергетических зон твёрдого тела. У полупроводников и диэлектриков при Д. в. появляется характерная для металлов высокая электропроводность (электроны благодаря перекрытию энергетических зон переходят из т. н. валентной зоны в зону проводимости). Изменение типа проводимости может носить как постепенный (под при 160—240 кбар ), так и резкий характер (селен около 130 кбар ). Тенденция к переходу в металлическое состояние является, по-видимому, общей для всех веществ при достаточно высоких давлениях. Например, у серы переход в металлическое состояние наблюдается при 200 кбар, для водорода вычисленное значение Д. в. появления металлической проводимости составляет ~(1—2)·103кбар, для гидрида лития ~(25—30)·104кбар, гелия ~9 ·104 кбар. Иногда смещение энергетических зон в определённом интервале давлений вызывает обратный эффект, например металлический иттербий в интервале 20—40 кбар ведёт себя как полупроводник, а при дальнейшем повышении Д. в. испытывает полиморфный переход с образованием новой металлической модификации.

Электронная структура твёрдых тел под Д. в. исследуется также оптическими метолами и методами, использующими ряд тонких физических эффектов (см. Холла эффект , Циклотронный резонанс , Мёссбауэра эффект ). Сведения об электронном строении металлов и взаимодействии электронов с фонолами под Д. в. дают также исследования сверхпроводимости. температура перехода металлов и сплавов в сверхпроводящее состояние под действием Д. в. изменяется: понижается у всех непереходных металлов (например, у Sn, In, AI, Cd, Zn) и повышается у ряда переходных металлов (Nb, V, Ta, La, U и др.) и некоторых сплавов. Некоторые простые вещества (Si, Ge, Te, Se, Р), не относящиеся к сверхпроводникам при атмосферном давлении, имеют при Д. в. сверхпроводящие модификации. Образование таких модификаций у Si, Ge, Te (полупроводников в нормальных условиях) происходит, соответственно, при 120, 115 и 45 кбар. К наиболее известным магнитным эффектам Д. в. относится сдвиг температуры превращения ферромагнетика в парамагнетик (Кюри точки , рис. 15 ).

Способы создания Д. в. Динамические Д. в. получают с помощью взрыва, искрового разряда, импульсного изменения магнитного поля и главным образом инерционных методов — торможения сжимаемым телом др. тела, летящего с большой скоростью.

При резком и значительном смещении поверхности тела, вызванном одним из этих способов, возникает ударная волна. Ударное сжатие сопровождается значительным разогревом вещества: температура поваренной соли и свинца, сжатых до 1000 кбар, составляет -~9·103 °C, а меди и вольфрама, соответственно, 1500 и 750°C. При неограниченном возрастании давления степень сжатия за фронтом ударной волны не превосходит некоторого предельного значения (для металлов 5—7 в зависимости от температуры). Это обусловлено ростом давления в основном за счёт его «тепловой» составляющей. В изотермическом и изоэнтропийном процессах этого ограничения нет.

Поделиться:
Популярные книги

Черный Маг Императора 17

Герда Александр
17. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Черный Маг Императора 17

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Изгой

Майерс Александр
2. Династия
Фантастика:
фэнтези
попаданцы
рпг
аниме
5.00
рейтинг книги
Изгой

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Развод. Боль предательства

Верди Алиса
4. Измены
Любовные романы:
современные любовные романы
7.50
рейтинг книги
Развод. Боль предательства

Прапорщик. Назад в СССР. Книга 7

Гаусс Максим
7. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прапорщик. Назад в СССР. Книга 7

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Бывшая жена драконьего военачальника

Найт Алекс
2. Мир Разлома
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бывшая жена драконьего военачальника

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

Чудовищная алхимия. Том 2

Тролль Борис Фёдорович
2. Мир в чужом кармане
Фантастика:
юмористическое фэнтези
попаданцы
фэнтези
5.00
рейтинг книги
Чудовищная алхимия. Том 2

Отморозок 1

Поповский Андрей Владимирович
1. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 1