Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ДИ)
Шрифт:

где А = А (x), a = a(х, x) ® 0 при х ® x. В этом и только в этом случае выражение ADx называется дифференциалом функции f (x) в точке x и обозначается dy или df (x). Геометрически дифференциал (при фиксированном значении x

и меняющемся приращении Dx) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис.). Дифференциал dy представляет собой функцию как от точки х, так и от приращения Dх. Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х, dy есть линейная функция от Dх и разность Dydy есть бесконечно малая относительно Dx. Для функции f (x) o х имеем dx = Dх, т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx. Имеется тесная связь между дифференциалом функции и её производной. Для того чтобы функция от одного переменного y = f (x) имела в точке x дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f' (x), и справедливо равенство dy = f' (x) dx. Наглядный смысл этого предложения состоит в том, что касательная к кривой y = f (x) в точке с абсциссой x как предельное положение секущей является также такой прямой, которая в бесконечно малой окрестности точки x примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А (х) = f' (x); запись dy/dx можно понимать не только как обозначение для производной f' (x), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f' (x) dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных.

Рассматриваются также дифференциалы высших порядков. На практике с помощью дифференциалов часто производят приближённые вычисления значений функции, а также оценивают погрешности вычислений. Пусть, например, надо вычислить значение функции f (x) в точке х, если известны f (x ) и f' (x). Заменяя приращение функции её дифференциалом, получают приближённое равенство

f (x1) » f (x) + df (x) = f (x) + f' (x) (x1x).

Погрешность

этого равенства приближённо равна половине второго дифференциала функции, т. е.

1/2 d2f = 1/2 f" (x)(x1x)2.

Приложения. В Д. и. устанавливаются связи между свойствами функции и её производных (или дифференциалов), выражаемые основными теоремами Д. и. К их числу относятся Ролля теорема, формула Лагранжа f (a) — f (b) = f' (c)(bа), где a < с < b (подробнее см. Конечных приращений формула), и Тейлора формула.

Эти предложения позволяют методами Д. и. провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость, возрастание и убывание функций, их экстремумы, найти их асимптоты, точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т.д. Например, условие f' (x) > 0 влечёт за собой (строгое) возрастание функции у = f (x), а условие f" (x) > 0 — её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f' (x) = 0.

Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и yen/yen (см. Неопределённое выражение, Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х, у) частной производной по х называется производная этой функции по х при постоянном у. Эта частная производная обозначается z'x, f'x (x, y), ¶z/х или ¶f (x, y)/¶x, так что

Поделиться:
Популярные книги

Полуостров Надежды. Трилогия

Буторин Андрей Русланович
Вселенная Метро 2033
Фантастика:
боевая фантастика
постапокалипсис
8.00
рейтинг книги
Полуостров Надежды. Трилогия

Красная королева

Ром Полина
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Красная королева

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Интернет-журнал "Домашняя лаборатория", 2007 №8

Журнал «Домашняя лаборатория»
Дом и Семья:
хобби и ремесла
сделай сам
5.00
рейтинг книги
Интернет-журнал Домашняя лаборатория, 2007 №8

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Переписка П. И. Чайковского с Н. Ф. фон Мекк

Чайковский Петр Ильич
Документальная литература:
биографии и мемуары
публицистика
5.00
рейтинг книги
Переписка П. И. Чайковского с Н. Ф. фон Мекк

Лучше подавать холодным

Аберкромби Джо
4. Земной круг. Первый Закон
Фантастика:
фэнтези
8.45
рейтинг книги
Лучше подавать холодным

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде