Большая Советская Энциклопедия (ЛИ)
Шрифт:
имел наименьшее значение. Вводя в пространство С[0,1] норму формулой
эту задачу можно сформулировать следующим образом: требуется найти многочлен Pk– i(t),
и решать задачу о наилучшем приближении в смысле этой нормы. Нормы
по первой норме расходится, а по второй норме при p(t) = 1 сходится к функции
Следует отметить, что хотя все функции xn(t) были непрерывны, функция x(t) разрывна. Это связано с тем, что пространство непрерывных функций неполно относительно нормы
существует в Л. п. такой элемент х, что данная последовательность сходится к нему, т. е.
Если Л. п. неполно, то к нему можно присоединить новые элементы (пополнить его) так, что оно станет полным. Например, пополняя пространство непрерывных функций, взятое с нормой
Обобщением понятия B– пространства является понятие топологического Л. п. Так, называют множество Е, если: 1) оно представляет собой Л. п., 2) оно является топологическим пространством, 3) операции сложения и умножения на числа в Е непрерывны относительно заданной в Е топологии. К числу топологического Л. п. относятся все нормированные пространства. А. Н. Колмогоров установил (1934) необходимые и достаточные условия нормируемости топологического Л. п.
Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965.
Линейное судоходство
Лине'йное судохо'дство, см. Морские линии.
Линейное уравнение
Лине'йное уравне'ние, уравнение, в которое неизвестные входят в 1-й степени (т. е. линейно) и отсутствуют члены, содержащие произведения неизвестных.
Чаще всего встречается случай, когда число уравнений совпадает с числом неизвестных. Одно Л. у. с одним неизвестным имеет вид:
ax = b;
решением его при а ¹ 0 будет число b/a. Система двух Л. у. с двумя неизвестными имеет вид:
где a11, a12, a21, a22, b1, b2— какие-либо числа. Решение системы (1) можно получить с помощью определителей:
здесь предполагается, что стоящий в знаменателе определитель
Аналогичное правило применимо и при решении любой системы и Л. у. с n неизвестными, т. е. системы вида:
здесь aij и bi (i, j = 1, 2, ..., n) — произвольные числовые коэффициенты; числа b1, b2, ..., bn называют обычно свободными членами. Если определитель D = ½aij½ системы (2), составленный из коэффициентов aij при неизвестных, отличен от нуля, то решение получается следующим образом: k– e (k = 1, 2, ..., n) неизвестное xk равно дроби, в знаменателе которой стоит определитель D, а в числителе — определитель, полученный из D заменой в нём столбца из коэффициентов при отыскиваемом неизвестном (к– го столбца) столбцом свободных членов b1, b2, ..., bn. Если D = 0, то система (2) либо не имеет ни одного решения, либо имеет бесконечное множество решений.
Если все bi = 0 (систему Л. у. называют в этом случае однородной), то при D ¹ 0 решение системы (2) будет нулевым (т. е. все xk = 0). В практике часто, однако, встречаются однородные системы Л. у. с числом уравнений на 1 меньше числа неизвестных, т. е. системы вида:
Решение такой системы неоднозначно; из неё, как правило, можно найти только отношение неизвестных: