Большая Советская Энциклопедия (МЕ)
Шрифт:
По точности различают 5 классов М. с.: Н — нормальной точности (например, большинство универсальных М. с.), П — повышенной точности (на базе Н), В — высокой точности, А — особо высокой точности (прецизионные), С — особо точные, или мастер-станки.
По массе М. с. бывают лёгкие (до 1 т ), средние (до 10 т ), тяжёлые (свыше 10 т ), уникальные (свыше 100 т ).
В зависимости от характера выполняемых работ и применяемого режущего инструмента в СССР принята единая система классификации и условного обозначения М. с. (табл.), разработанная в ЭНИМС. Все М. с. делятся на группы, которые, в свою очередь, разбиваются на типы. По этой классификации каждому М. с. серийного производства присваивается шифр (индекс), который образуется, как правило, числом из 3 или 4 цифр; первая цифра указывает группу,
Кинематика М. с . При обработке на М. с. очертания, форма деталей (производящие линии) образуется в результате согласованных между собой вращательных и прямолинейных движений заготовки и режущей кромки металлорежущего инструмента. Эти движения, называемые рабочими, могут быть простыми и сложными. В М. с. используются 4 метода получения производящих линий: копирование, огибание (обкатка), методы следа и касания. При копировании форма режущей кромки инструмента совпадает с формой производящей линии (рис. 1 , а, б); при огибании производящая линия возникает в форме огибающей ряда последовательных положений режущей кромки инструмента, движущегося относительно заготовки (рис. 1 , б); при методе следа производящая линия образуется как след движения точки режущей кромки инструмента (рис. 1 , г, д), при методе касания производящая линия является касательной к ряду геометрических вспомогательных линий, образованных реальной точкой (вершиной) движущейся режущей кромки инструмента (рис. 1 , е).
Рабочие движения в М. с. — главное движение и движение подачи. Главное движение, происходящее в направлении вектора скорости резания, обеспечивает отделение стружки от заготовки, а движение подачи — последовательное внедрение инструмента в заготовку, «захват» новых, ещё не обработанных участков. Главное движение в зависимости от типа М. с. может совершаться как заготовкой (токарные, продольно-строгальные и др. станки), так и инструментом (сверлильные, поперечно-строгальные, долбёжные, протяжные, фрезерные, шлифовальные и др. станки); это движение может быть вращательным (токарные, сверлильные, фрезерные, шлифовальные и др. М. с.) или поступательным (строгальные, долбёжные, протяжные и др. М. с.). Помимо рабочих движений, на М. с. совершаются также установочные и делительные движения, которые не используются в процессе обработки резанием, однако необходимы для осуществления полного технологического цикла. Все движения в М. с. обеспечивают соответствующие механизмы, в которые входят различные передачи: ремённые, зубчатые, червячные, реечные, винтовые, кулачковые, фрикционные и др. Эти передачи сочленяются между собой в определённой последовательности и образуют кинематические цепи, совокупность которых составляет кинематическую схему М. с. При этом пользуются условными обозначениями элементов и механизмов М. с. по ГОСТ 3462—61. На кинематических схемах указываются диаметры шкивов (D1 , D2 и т.д.), числа зубьев зубчатых и червячных колёс (z1 , z2 и т.д.), шаги винтов, заходности червяков и винтов, модули (т ) некоторых зубчатых колёс (обычно находящихся в зацеплении с рейками), передаточные отношения плеч рычагов, характеристики звеньев настройки и др.
Для станков с вращательным главным рабочим движением скорость резания определяется по формуле:
где D — максимальный диаметр обработки (или максимальный диаметр инструмента) в мм; n — число оборотов шпинделя в минуту. Для конкретного М. с. диаметр заготовки (инструмента) может быть различным, может производиться также обработка заготовок из различных материалов и режущими инструментами с режущей частью из разных инструментальных материалов (что приводит к выбору соответствующих допускаемых скоростей резания). Привод главного движения должен обеспечивать поэтому регулирование числа оборотов шпинделя. Существует бесступенчатое и ступенчатое регулирование. В первом случае в определённом интервале можно за счёт фрикционного, гидравлического или электрического привода получить любое значение n . Во втором случае имеется определённый конечный ряд различных n . Это обеспечивается
где D диапазон регулирования числа оборотов шпинделя в 1 мин, z — количество ступеней регулирования. В станкостроении СССР значения j и соответствующие им перепады скоростей А стандартизированы:
j | 1,06 | 1,12 | 1,26 1,25 | 1,41 1,4 | 1,58 1,6 | 1,78 | 2 |
А , % | 5 | 10 | 20 | 30 | 40 | 45 | 50 |
Примечание. Во втором ряду указаны допускаемые округления.
Основной показатель любой кинематической цепи — общее передаточное отношение:
где nk и nн — числа оборотов соответственно конечного и начального звеньев в об/мин; U1 , U2 , U3 — передаточные отношения отдельных пар кинематической цепи. Значение Uoбщ позволяет определить значения конечных перемещении звеньев, связанных кинематической цепью, т. е. заготовки и режущего инструмента. Соответствующие функциональные связи называют уравнениями кинематического баланса. Эти уравнения в 20—30-е гг. 20 в. выведены советским учёным Г. М. Головиным, предложившим единые формулы настройки для всех станков.
Для вращающихся конечных звеньев уравнение кинематического баланса: nk = nн · Uoбщ ; для вращающегося начального звена и поступательно-движущегося конечного: nн · Uoбщ · Н = smмм/мин, 1об · Uoбщ · Н = sмм/об, где Н — величина хода кинематической пары, преобразующей вращательное движение в прямолинейное, равная перемещению прямолинейно движущегося звена за один оборот вращающегося звена (для токарного, сверлильного, фрезерного и др. станков).
Для М. с. с прямолинейным главным движением (строгальный, долбёжный, протяжный и др.) различаются рабочий ход, в течение которого происходит резание, и холостой (обратный) ход, в течение которого движущиеся части станка возвращаются в исходное положение. Скорость холостого хода Vx = Vp · X , где Vp — скорость рабочего хода; Х = 1,5... 2,5 — коэффициент, выбираемый в зависимости от типоразмера станка.
Рабочий и холостой ходы составляют двойной ход. Время двойного хода:
где L — длина хода (в мм ). Число двойных ходов (в 1 мин ):
Для токарного станка с простой кинематической схемой ступенчатого главного привода (рис. 2 ), согласно уравнению кинематического баланса, возможны следующие варианты числа оборотов шпинделя в 1 мин: