Большая Советская Энциклопедия (МЕ)
Шрифт:
Металлы в технике. Благодаря таким свойствам, как прочность, твёрдость, пластичность, коррозионная стойкость, жаропрочность, высокая электрическая проводимость и многое др., М. играют громадную роль в современной технике, причём число М., находящих применение, постоянно растет. Характерно, что до начала 20 в. многие важнейшие М. — Al, V, W, Mo, Ti, U, Zr и др. — либо не производились вообще, либо выпускались в очень ограниченных масштабах; такие М., как Be, Nb, Ta, начали сравнительно широко использоваться лишь накануне 2-й мировой войны 1939—45. В 70-х гг. 20 в. в промышленности применяются практически все М., встречающиеся в природе.
Все М. и образованные из них сплавы делят на чёрные (к ним относят железо и сплавы на его основе; на их долю приходится около 95% производимой в мире металлопродукции) и цветные, или, точнее, нежелезные (все остальные М. и сплавы). Большое число нежелезных М. и широкий диапазон их свойств не
Большая способность М. к образованию многочисленных соединений разного типа, к различным фазовым превращениям создаёт благоприятные условия для получения разнообразных сплавов , характеризующихся требуемым сочетанием полезных свойств. Число используемых в технике сплавов превысило уже 10 тыс. Значение сплавов как конструкционных материалов , электротехнических материалов, материалов с особыми физическими свойствами (см. Прецизионные сплавы ) непрерывно возрастает. В то же время в связи с развитием полупроводниковой и ядерной техники расширяется производство ряда особо чистых металлов (чистотой например, 99,9999% и выше).
Применение того или иного М. (или сплава) в значительной мере определяется практической ценностью его свойств; однако существенное значение имеют и др. обстоятельства, в первую очередь природные запасы М., доступность и рентабельность его добычи. Из наиболее ценных и важных для современной техники М. лишь немногие содержатся в земной коре в больших количествах: Al (8,8%), Fe (4,65%) Mg (2,1%), Ti (0,63%). Природные ресурсы ряда весьма важных М. измеряются сотыми долями процента (например, Cu, Mn, Cr, V, Zr) и даже тысячными долями (например, Zn, Sn, Pb, Ni, Co, Nb). Некоторые ценные М. присутствуют в земной коре в ещё меньших количествах. Так, содержание урана — важнейшего источника ядерной энергии — оценивается в 0,0003%, вольфрама, являющегося основой твёрдых сплавов, — 0,0001% и т.д. Особенно бедна природа благородными и т. н. редкими М.
Многообразие М. предопределяет большое число способов их получения и обработки (см. Металлургия ). Взаимосвязь состава, строения и свойств металлов и сплавов, а также закономерности их изменения в результате теплового, химического или механического воздействия изучает металловедение . О свойствах, способах получения, масштабах производства и применении отдельных М. см. в статьях, посвященных соответствующим химическим элементам и сплавам на их основе (например, Алюминий , Алюминиевые сплавы , Бериллий , Бериллиевые сплавы и т.д.).
О применении М. и их сплавов в искусстве см. в статьях Бронза , Железо , Золото , Медь , Олово , Серебро , Сталь , Чугун , Гравирование , Гравюра , Зернь , Ковка , Насечка , Тиснение , Филигрань , Чеканка , Ювелирное искусство .
И. И. Новиков.
Периодическая система Д. И. Менделеева. Свойства металлов.
Металогика
Метало'гика (от мета... ),
Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Карнап Р., Значение и необходимость, пер. с англ., М., 1959; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960 (введение); Carnap R., The logical syntax of language, N. Y. — L., 1937; Tarski A., Logic, semantics, metamathematics, Oxf., 1956; Martin R., Towards to systematic pragmatics, Amst., 1959.
Ю. А. Гастев, В. К. Финн.
Метальдегид
Метальдеги'д , полимеризованный ацетальдегид, средство для борьбы с голыми слизнями; см. Лимациды .
Метамагнетик
Метамагне'тик , вещество, обладающее в слабых магнитных полях свойствами антиферромагнетиков , а в полях напряжённостью выше 5—10 кэ — свойствами ферромагнетиков . Типичными М. являются слоистые соединения типа FeCl2 , в которых слои ионов железа, обладающих магнитным моментом, отделены друг от друга двумя слоями немагнитных ионов хлора. Слои магнитных ионов представляют собой двумерные ферромагнетики, внутри этих слоев между ионами имеется сильное ферромагнитное обменное взаимодействие (см. Ферромагнетизм ). Между собой соседние слои магнитных ионов связаны антиферромагнитно (см. Антиферромагнетизм ). В результате в системе магнитных моментов устанавливается упорядоченное состояние в виде слоистой магнитной структуры из чередующихся по направлению намагниченности ферромагнитных слоев. Нейтронографические исследования (см. Нейтронография ) подтвердили существование такой магнитной структуры в FeCl2 , FeBr2 , FeCO3 и др. М. Вследствие относительно слабой антиферромагнитной связи между слоями и не очень большой магнитной анизотропии самих слоев, внешние магнитные поля напряжённостью выше 5—10 кэ могут превратить слоистый М. в однородный намагниченный ферромагнетик (рис. ). Фазовый переход 1-го рода, при котором векторы намагниченности всех слоев М. устанавливаются параллельно приложенному магнитному полю, называются метамагнитным.
Часто термин «М.» распространяют на все антиферромагнетики, в которых эффективное магнитное поле анизотропии HA (ответственное за ориентацию магнитных моментов относительно кристаллографических осей) больше (или равно) HE — эффективного поля антиферромагнитного обменного взаимодействия .
Лит.: Ландау Л. Д., Возможное объяснение зависимости восприимчивости от поля при низких температурах. Собр. трудов, т. 1, М., 1969; Боровик-Романов А. С., Антиферромагнетизм, в сборнике: Антиферромагнетизм и ферриты, М., 1962 (Итоги науки. Физико-математические науки, т. 4); Вонсовский С. В., Магнетизм, М., 1971, с. 760.