Большая Советская Энциклопедия (ПЕ)
Шрифт:
Мягкость переходов от одной опоры к другой, обычная для П. л., придаёт ему спокойно-переливчатый характер. Возможна, однако, и иная его трактовка — см., например, отрывок из 2-го действия оперы «Князь Игорь» Бородина:
Лит.: Протопопов С. В., Элементы строения музыкальной речи, ч. 1—2, М., 1930; Вахромеев В. А., Ладовая структура русских народных песен, М., 1968; Способин И. В. Лекции по курсу гармонии, М., 1969.
Ю. Н. Холопов.
Илл. к ст. Переменный лад.
Илл. к ст. Переменный лад.
Переменный
Переме'нный про'филь, длинномерное металлическое изделие с сечением, изменяющимся по длине (плавно или ступенчато). Профили плавного переменного сечения изготовляют в основном прокаткой, непрерывно меняя расстояние между валками (см. Прокатный профиль ), а профили ступенчатого переменного сечения — главным образом прессованием (выдавливанием) через матрицу (см. Прессованный профиль ). Для получения профилей с переменными наружными размерами производят смену матриц в процессе прессования. Для получения полых профилей с переменными размерами внутреннего контура изменяют положение ступенчатой иглы (оправки) в матрице. Возможно также изготовление П. п. штамповкой отдельных участков по длине профиля постоянного сечения. П. п. используют для изготовления консольно нагруженных конструкций, а также сварных или клёпаных конструкций, когда утолщение необходимо для создания равнопрочного соединения.
Лит.: Шор Э. Р., Новые процессы прокатки, М., 1960; Ерманок М. З., Синяков В. В., Прессование профилей и труб периодически изменяющегося сечения, М., 1968.
Переменный ток
Переме'нный ток, в широком смысле электрический ток , изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю. Периодом Т П. т. называют наименьший промежуток времени (выраженный в сек ), через который изменения силы тока (и напряжения) повторяются (рис. 1 ). Важной характеристикой П. т. является его частота f — число периодов в 1 сек: f = 1/Т. В электроэнергетических системах СССР и большинства стран мира принята стандартная частота f = 50 гц, в США — 60 гц. В технике связи применяются П. т. высокой частоты (от 100 кгц до 30 Ггц ). Для специальных целей в промышленности, медицине и др. отраслях науки и техники используют П. т, самых различных частот, а также импульсные токи (см. Импульсная техника ).
Для передачи и распределения электрической энергии преимущественно используется П. т. благодаря простоте трансформации его напряжения почти без потерь мощности (см. Передача электроэнергии , Электрическая цепь ). Широко применяются трёхфазные системы П. т. (см. Трёхфазная цепь ). Генераторы и двигатели П. т. по сравнению с машинами постоянного тока при равной мощности меньше по габаритам, проще по устройству, надёжнее и дешевле. П. т. может быть выпрямлен, например полупроводниковыми выпрямителями, а затем с помощью полупроводниковых инверторов преобразован вновь в П. т. другой, регулируемой частоты; это создаёт возможность использовать простые и дешёвые безколлекторные двигатели П. т. (асинхронные и синхронные) для всех видов электроприводов, требующих плавного регулирования скорости.
П. т. широко применяется в устройствах связи (радио, телевидение, проволочная телефония на дальние расстояния и т. п.).
П. т. создаётся переменным напряжением. Переменное электромагнитное поле, возникающее в пространстве, окружающем проводники с током, вызывает колебания энергии в цепи П. т.: энергия периодически то накапливается в магнитном или электрическом поле, то возвращается источнику электроэнергии. Колебания энергии создают в цепи П. т. реактивные токи, бесполезно загружающие провода и источник тока и вызывающие дополнительные потери энергии, что является недостатком передачи энергии П. т.
За основу для характеристики силы П. т. принято сопоставление среднего теплового действия П. т. с тепловым действием постоянного тока соответствующей силы. Полученное таким путём значение силы П. т. I называется действующим (или эффективным) значением, математически представляющим среднеквадратичное за период значение силы тока. Аналогично определяется и действующее значение напряжения П. т. U. Амперметры и вольтметры П. т. измеряют именно действующие значения тока и напряжения.
В простейшем и наиболее важном на практике случае мгновенное значение силы i П. т. меняется во времени t по синусоидальному закону: i = Im sin (wt + a ), где Im — амплитуда тока, w = 2 pf — его угловая частота, a — начальная фаза. Синусоидальный (гармонический) ток создаётся синусоидальным напряжением той же частоты: u = Um sin (wt + b ), где Um — амплитуда напряжения, b —
В цепи, не содержащей ни индуктивности, ни ёмкости, ток совпадает по фазе с напряжением (рис. 3 ). Закон Ома для действующих значений в этой цепи будет иметь такую же форму, как для цепи постоянного тока: I = U/r. Здесь r — активное сопротивление цепи, определяемое по активной мощности Р, затрачиваемой в цепи: r = P/I2 .
При наличии в цепи индуктивности L П. т. индуцирует в ней эдс самоиндукции eL = — L. di/dt = — wLlm cos (wt + a ) = wLIm sin (wt + a — p /2). Эдс самоиндукции противодействует изменениям тока, и в цепи, содержащей только индуктивность, ток отстаёт по фазе от напряжения на четверть периода, то есть j =p /2 (рис. 4 ). Действующее значение eL равно EL = IwL = IxL , где xL = wL — индуктивное сопротивление цепи. Закон Ома для такой цепи имеет вид: I = U/xL = U/wL.
Когда ёмкость С включена под напряжение u, то её заряд равен q = Cu. Периодические изменения напряжения вызывают периодические изменения заряда, и возникает ёмкостный ток i = dq/dt = Cxdu/dt = (CUm cos (wt + b ) = wCUm sin (wt + b + p /2). Таким образом, синусоидальный П. т., проходящий через ёмкость, опережает по фазе напряжение на её зажимах на четверть периода, то есть j = —p /2 (рис. 5 ). Эффективные значения в такой цепи связаны соотношением I = wCU = U/xc , где xc = 1/wС — ёмкостное сопротивление цепи.
Если цепь П. т. состоит из последовательно соединённых r, L и С , то её полное сопротивление равно