Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (РА)
Шрифт:

Дальнейшие примеры Р. вероятностей см. в статьях Коши распределение,Пирсона кривые, Полиномиальное распределение, Показательное распределение,  «Хи-квадрат» распределение,Стьюдента распределение.

Пусть случайные величины Х и Y связаны соотношением Y = f (X), где f (x) заданная функция. Тогда Р. Y может быть довольно просто выражено через Р. X. Например, если Х имеет нормальное Р. и Y = eX, то Y

имеет т. н. логарифмически-нормальное распределениес плотностью (см. рис. 4)

.

Формулы, связывающие Р. величин X и Y, становятся особенно простыми, когда Y = aX + b, где а и b — постоянные. Так, при a > 0

Часто полное описание Р. (например, при помощи плотности или функции Р.) заменяют заданием небольшого числа характеристик, которые указывают или на наиболее типичные (в том или ином смысле) значения случайной величины, или на степень рассеяния значений случайной величины около некоторого типичного значения. Из этих характеристик наиболее употребительны математическое ожидание (среднее значение) и дисперсия. Математическое ожидание EX случайной величины X, имеющей дискретное Р., определяется как сумма ряда

при условии, что этот ряд сходится абсолютно. Для случайной величины X, имеющей Р. непрерывного типа с плотностью pX (x), математическое ожидание определяется формулой

EX =

при условии, что написанный интеграл сходится абсолютно. Если Y = f (X), то EY может быть вычислено двумя способами. Например, если Х и Y имеют непрерывное Р., то, с одной стороны, по определению

EY =

с другой стороны, можно показать, что

EY =

Дисперсия DX определяется как

DX = Е (Х — EX)2,

т. е., например, для непрерывного Р.

DX =

Р. вероятностей имеют много общего с Р. каких-либо масс на прямой. Так, случайной величине X, принимающей значения x1 x2 ..., xn c вероятностями p1, p2, ..., pn, можно поставить в соответствие Р. масс, при котором в точках xk размещены массы, равные pk. При этом формулы для EX и DX оказываются совпадающими с формулами, определяющими соответственно центр тяжести и момент инерции указанной системы материальных точек. Подробнее о числовых характеристиках Р. см. в статьях Квантиль,Медиана,Мода,Математическое ожидание,Вероятное отклонение,Дисперсия,Квадратичное отклонение.

Если складываются несколько независимых случайных величин, то их сумма будет случайной величиной, Р. которой зависит только от Р. слагаемых (чего не будет, как правило,

при сложении зависимых случайных величин). При этом, например, для случая двух слагаемых, каждое из которых имеет Р. непрерывного типа, имеет место формула:

(*)

В весьма широких предположениях Р. суммы независимых случайных величин при увеличении числа слагаемых приближается к нормальному Р. или к др. предельным Р. (см. Предельные теоремытеории вероятностей). Однако для установления этого факта явные формулы типа (*) практически непригодны, поэтому доказательство ведётся обходным путём, обычно с использованием т. н. характеристических функций.

Статистические распределения и их связь с вероятностными. Пусть произведено n независимых наблюдений случайной величины X, имеющей функцию Р. F (x). Статистическое Р. результатов наблюдений задаётся указанием наблюдённых значений x1, x2, ..., xr случайной величины Х и соответствующих им частот h1, h2, ..., hr (т. е. отношений числа наблюдений, в которых появляется данное значение, к общему числу наблюдений). Например, если при 15 наблюдениях значение 0 наблюдалось 8 раз, значение 1 наблюдалось 5 раз, значение 2 наблюдалось 1 раз и значение 3 наблюдалось 1 раз, то соответствующее статистическое Р. задаётся табличкой:

Наблюдённые значения Xm 0 1 2 3
Соответствующие частоты hm8/151/31/151/15

Частоты всегда положительны и в сумме дают единицу. С заменой слова «вероятность» на слово «частота» к статистическому Р. применимы многие определения, данные выше для Р. вероятностей. Так, если x1, x2, ..., xr наблюдённые значения X, a h1, h2, ..., hr частоты этих наблюдённых значений, то соответствующие статистическому Р. среднее и дисперсия (т. н. выборочное среднее и выборочная дисперсия) определяются равенствами

,

а соответствующая функция Р. (т. н. эмпирическая функция распределения) — равенством

F*(x) = nx/n,

где nx число наблюдений, результат которых меньше х. Статистическое Р. и его характеристики могут быть использованы для приближённого представления теоретического Р. и его характеристик. Так, например, если Х имеет конечные математическое ожидание и дисперсию, то, каково бы ни было e > 0, неравенства

выполняются при достаточно большом n с вероятностью, сколь угодно близкой к единице. Т. о.,

 и s2 суть состоятельные оценки для EX и DX соответственно (см. Статистические оценки). Советский математик В. И. Гливенко показал, что при любом e > 0 вероятность неравенства

Поделиться:
Популярные книги

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

…спасай Россию! Десант в прошлое

Махров Алексей
1. Господин из завтра
Фантастика:
альтернативная история
8.96
рейтинг книги
…спасай Россию! Десант в прошлое

Сделать выбор

Петрова Елена Владимировна
3. Лейна
Фантастика:
юмористическое фэнтези
попаданцы
8.43
рейтинг книги
Сделать выбор

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Найдёныш. Книга 2

Гуминский Валерий Михайлович
Найденыш
Фантастика:
альтернативная история
4.25
рейтинг книги
Найдёныш. Книга 2

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Шесть тайных свиданий мисс Недотроги

Суббота Светлана
Любовные романы:
любовно-фантастические романы
эро литература
7.75
рейтинг книги
Шесть тайных свиданий мисс Недотроги

Первый рейд Гелеарр

Саргарус Александр
Фантастика:
фэнтези
5.00
рейтинг книги
Первый рейд Гелеарр

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4