Большая Советская Энциклопедия (ТО)
Шрифт:
Геометрическая Т. довольно четко распадается на две части: изучение подмножеств
Открытым покрытием топологического пространства Х называют семейство его открытых множеств, объединением которого является всё X . Топологическое пространство Х называют компактным (в другой терминологии —бикомпактным), если любое его открытое покрытие содержит конечное число элементов, также образующих покрытие. Классическая теорема Гейне — Бореля утверждает, что любое ограниченное замкнутое подмножество
Открытое покрытие {Vb } называют вписанным в покрытие {Ua }, если для любого b существует a такое, что Vb `I Ua. Покрытие {Vb } называют локально конечным, если каждая точка х ^I Х обладает окрестностью, пересекающейся только с конечным числом элементов этого покрытия. Топологическое пространство называют паракомпактным, если в любое его открытое покрытие можно вписать локально конечное покрытие. Класс паракомпактных пространств является примером классов топологических пространств, получающихся наложением так называемых условий типа компактности. Этот класс очень широк, в частности он содержит все метризуемые топологические пространства, то есть пространства X , в которых можно ввести такую метрику r, что Т., порожденная r в X, совпадает с Т., заданной в X .
Кратностью открытого покрытия называют наибольшее число k такое, что найдётся k его элементов, имеющих непустое пересечение. Наименьшее число n, обладающее тем свойством, что в любое конечное открытое покрытие топологического пространства Х можно вписать открытое покрытие кратности lbn + 1, обозначается символом dimХ и называется размерностью X . Это название оправдано тем, что в элементарно-геометрических ситуациях dimХ совпадает с обычно понимаемой размерностью, например dim
Важные классы топологических пространств получаются наложением так называемых аксиом отделимости. Примером является так называемая аксиома Хаусдорфа, или аксиома T2 , требующая, чтобы любые две различные точки обладали непересекающимися окрестностями. Топологическое пространство, удовлетворяющее этой аксиоме, называется хаусдорфовым, или отделимым. Некоторое время в математической практике встречались почти исключительно хаусдорфовы пространства (например, любое метрическое пространство хаусдорфово). Однако роль нехаусдорфовых топологических пространств в анализе и геометрии постоянно растет.
Топологические пространства, являющиеся подпространствами хаусдорфовых (би) компактных пространств, называются вполне регулярными или тихоновскими. Их тоже можно охарактеризовать некоторой аксиомой отделимости, а именно: аксиомой, требующей, чтобы для любой точки x
Топологические пространства, являющиеся открытыми подпространствами хаусдорфовых компактных, называются локально компактными пространствами. Они характеризуются (в классе хаусдорфовых пространств) тем, что каждая их точка обладает окрестностью с компактным замыканием (пример: евклидово пространство). Любое такое пространство дополняется одной точкой до компактного (пример: присоединением одной точки из плоскости получается сфера комплексного переменного, а из
Отображение f : X ® Y топологическое пространства Х в топологическое пространство Y называют непрерывным отображением, если для любого открытого множества V `I Y множество f—1 (V ) открыто в X . Непрерывное отображение называют гомеоморфизмом, если оно взаимно однозначно и обратное отображение f—1 : Y ® X непрерывно. Такое отображение устанавливает взаимно однозначное соответствие между открытыми множествами топологических пространств Х и Y , перестановочное с операциями объединения и пересечения множеств. Поэтому все топологические свойства (то есть свойства, формулируемые в терминах открытых множеств) этих пространств одни и те же, и с топологической точки зрения гомеоморфные
Пусть {Хa } — произвольное семейство топологических пространств. Рассмотрим множество Х всех семейств вида {хa }, где xa
Если Х — топологическое пространство, а Y — произвольное множество и если задано отображение p : X ® Y пространства Х на множество Y (например, если Y является фактормножеством Х по некоторому отношению эквивалентности, а p представляет собой естественную проекцию, сопоставляющую с каждым элементом х ^I Х его класс эквивалентности), то можно ставить вопрос о введении в Y топологической структуры, относительно которой отображение p непрерывно. Наиболее «богатую» (открытыми множествами) такую структуру получают, полагая открытыми множествами в Y все те множества V `I Y, для которых множество f– 1 (V ) `I Х открыто в X . Снабженное этой топологической структурой множество Y называется факторпространством топологического пространства Х (по отношению к p ). Оно обладает тем свойством, что произвольное отображение f : Y ® Z тогда и только тогда непрерывно, когда непрерывно отображение