Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:
Между тем множатся ситуации, в которых неточность воспринимается скорее как особенность, а не как недостаток. Взамен снижения стандартов допустимых погрешностей вы получаете намного больше данных, с помощью которых можно совершать новые открытия. При этом действует принцип не просто «больше данных — какой-то результат», а, по сути, «больше данных — лучше результат».
Нам предстоит иметь дело с несколькими видами беспорядочности. Это может быть связано с тем, что при добавлении новых точек данных вероятность ошибок возрастает. Следовательно, если, например, увеличить показатели нагрузки на мост в тысячу раз, возрастет вероятность того, что некоторые показатели будут ошибочными. Вы увеличите беспорядочность, сочетая различные типы информации из разных источников, которые не всегда идеально выравниваются. Или, определив причину жалоб, направленных в центр обработки заказов с помощью программного обеспечения для распознавания речи, и сравнив эти данные со временем, затраченным со стороны оператора на их обработку, можно получить несовершенную, но полезную общую картину ситуации.
39
Множество способов сослаться на IBM: Patil, D. J. Data Jujitsu: The Art of Turning Data into Product // O’Reilly Media. — July 2012. URL: http://oreillynet.com/oreilly/data/radarreports/data-jujitsu.csp?cmp=tw-strata-books-data-products.
Представьте себе, что вам нужно измерить температуру в винограднике. Если у вас только один датчик температуры на весь участок земли, необходимо убедиться, что он работает точно и непрерывно. Если же для каждой из сотен лоз установлен отдельный датчик, вероятно, рано или поздно какой-то из них станет предоставлять неправильные данные. Полученные данные могут быть менее точными (или более «беспорядочными»), чем от одного точного датчика. Любой из отдельно взятых показателей может быть ошибочным, но в совокупности множество показателей дадут более точную картину. Поскольку набор данных состоит из большего числа точек данных, его ценность гораздо выше, и это с лихвой компенсирует его беспорядочность.
Теперь рассмотрим случай повышения частоты показателей. Если мы возьмем одно измерение в минуту, то можем быть уверены, что данные будут поступать в идеально хронологическом порядке. Измените частоту до десяти или ста показателей в секунду — и точность последовательности станет менее определенной. Так как информация передается по сети, запись может задержаться и прибыть не по порядку либо попросту затеряться. Информация получится немного менее точной, но ввиду большого объема данных отказаться от строгой точности вполне целесообразно.
В первом примере мы пожертвовали точностью отдельных точек данных в пользу широты, получив взамен детали, которые не удалось бы обнаружить другим путем. Во втором случае отказались от точности в пользу частоты, зато увидели изменения, которые иначе упустили бы из виду. Такие ошибки можно устранить, если направить на них достаточно ресурсов. В конце концов, на Нью-Йоркской фондовой бирже производится 30 000 сделок в секунду, и правильная последовательность здесь чрезвычайно важна. Но во многих случаях выгоднее допустить ошибку, чем работать над ее предотвращением.
Мы можем согласиться с беспорядочностью в обмен на масштабирование. Один из представителей консалтинговой компании Forrester однажды выразился так: «Иногда два плюс два может равняться 3,9. И это достаточно хорошо». [40] Конечно, эти данные не могут быть абсолютно неправильными, и мы готовы в некоторой степени пожертвовать точностью в обмен на понимание общих тенденций. Большие данные преобразуют цифры в нечто более вероятностное, чем точность. В этом процессе обществу придется ко многому привыкнуть, столкнувшись с рядом проблем, которые мы рассмотрим в этой книге. Но на сегодняшний день стоит просто отметить, что при увеличении масштаба беспорядочность неизбежна, и с этим нужно смириться.
40
Идея о том, что «2 + 2 = 3,9»: Hopkins, Brian. Expand Your Digital Horizon With Big Data / Brian Hopkins and Boris Evelson // Forrester. — September 30, 2011.
Подобный переход можно заметить в том, в какой степени увеличение объема данных важнее других усовершенствований в вычислительных технологиях. Всем известно, насколько вычислительная мощность выросла за эти годы в соответствии с законом Мура, который гласит, что число транзисторов на кристалле удваивается примерно каждые два года. В результате компьютеры стали быстрее, а память — объемнее. Производительность алгоритмов, которые управляют многими нашими системами, также увеличилась, но осталась несколько в тени. По некоторым данным, вычислительные алгоритмы улучшились примерно в 43 000 раз в период между 1988 и 2003 годами — значительно больше, чем процессоры в соответствии с законом Мура. [41] Однако многие достижения, наблюдаемые в обществе благодаря большим данным, состоялись не столько за счет более быстрых чипов или улучшенных алгоритмов, сколько за счет увеличения количества данных.
41
Белый дом: Report To The President And Congress Designing A Digital Future: Federally Funded Research And Development In Networking And Information Technology // President’s Council of Advisors on Science and Technology. — December, 2010. — P. 71. URL: http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf.
Так,
42
Эндшпиль — заключительная часть шахматной партии.
43
Таблица шахматных эндшпилей. Наиболее полная общедоступная таблица шахматных эндшпилей, названная в честь ее создателей (Nalimovtableset), охватывает все варианты игры при шести (и менее) фигурах. Ее размер превышает 7 терабайт, и главная задача — сжатие содержащейся в ней информации. См.: Nalimov, E. V. Space-efficient indexing of chess endgame tables / E. V. Nalimov, G. McC. Haworth, and E. A. Heinz // ICGA Journal. — 2000. — Vol. 23, no. 3. — P. 148–162.
То, насколько можно усовершенствовать алгоритмы, увеличив количество данных, убедительно продемонстрировано в области обработки естественного языка — способа, с помощью которого компьютеры распознают слова, используемые нами в повседневной речи. Примерно в 2000 году Мишель Банко и Эрик Брилл из исследовательского центра Microsoft Research поставили задачу улучшить средство проверки грамматики — элемент программы Microsoft Word. Перед ними было несколько путей: улучшение существующих алгоритмов, поиск новых методов или добавление более сложных функций. Прежде чем выбрать один из них, они решили посмотреть, что будет, если существующие методы применить к гораздо большему количеству данных. Большинство исследований по машинному обучению алгоритмов полагались на корпусы, [44] состоящие из миллиона слов, а то и меньше. Поэтому Банко и Брилл выбрали четыре алгоритма общего назначения и ввели в них на три порядка больше данных: 10 миллионов слов, затем 100 миллионов и, наконец, миллиард.
44
Лингвистическим корпусом называют совокупность текстов, собранных в соответствии с определенными принципами, размеченных по определенному стандарту и обеспеченных специализированной поисковой системой. Термин введен в употребление в 1960-х годах в связи с развитием практики создания корпусов, которому начиная с 1980-х способствовало развитие вычислительной техники.
Результаты поразили. Чем больше данных подавалось на входе, тем лучше были результаты работы всех четырех типов алгоритмов. Простой алгоритм, который хуже всех справлялся с половиной миллиона слов, показал наилучший результат, обработав миллиард слов. Степень точности возросла с 75 до более чем 95%. И наоборот, алгоритм, который лучше всех справлялся с небольшим объемом данных, показал наихудший результат при больших объемах. Следует отметить, что при этом его результат, как и результат остальных алгоритмов, значительно улучшился: с 86 до 94% точности. «Эти результаты показывают, что нам, возможно, понадобится пересмотреть свое представление о том, на что стоит тратить время и средства: на разработку алгоритмов или на развитие корпусов», — отметили Банко и Брилл в одной из своих научных статей на эту тему. [45]
45
Эффективность алгоритма: Banko, Michele. Scaling to Very Very Large Corpora for Natural Language Disambiguation / Michele Banko & Eric Brill // Microsoft Research. — 2001. — P. 3. URL: http://acl.ldc.upenn.edu/P/P01/P01–1005.pdf.
Итак, чем больше данных, тем меньше затрат. А как насчет беспорядочности? Спустя несколько лет после того, как Банко и Брилл начали активно собирать данные, исследователи компании Google, их конкурента, стали рассуждать в том же направлении, но еще более масштабно. Они взялись тестировать алгоритмы, используя не миллиард слов, а корпус из целого триллиона слов. Целью Google была не разработка средства проверки грамматики, а еще более сложная задача — перевод.
Концепция так называемого «машинного» перевода появилась на заре вычислительной техники, в 1940 году, когда устройства состояли из вакуумных ламп и занимали целую комнату. Идея стала особенно актуальной во времена холодной войны, когда в руки США попало огромное количество письменных и устных материалов на русском языке, но не хватало человеческих ресурсов для их быстрого перевода.