Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:
Не так давно привилегию собирать и сортировать огромные массивы информации получили частные компании, а теперь — и отдельные лица. В прошлом эта задача лежала на организациях с более широкими возможностями, таких как церковь или государство, которые во многих странах имели одинаковое влияние. Древнейшая запись о подсчетах относится к примерно 8000 году до н. э., когда шумерские купцы записывали реализуемые товары с помощью маленьких шариков глины. Однако масштабные подсчеты были в компетенции государства. Тысячелетиями правительства старались вести учет населения, собирая информацию.
Обратимся к переписям. Считается, что египтяне начали проводить их примерно в 3000 году до н. э. (как и китайцы). Сведения об этом можно найти в Ветхом и, конечно, Новом Завете. В нем упоминается
Проведение переписей — процесс дорогостоящий и трудоемкий. Король Вильгельм I не дожил до завершения книги Судного дня, составленной по его распоряжению. Между тем существовал лишь один способ избавиться от трудностей, сопряженных со сбором информации, — отказаться от него. В любом случае информация получалась не более чем приблизительной. Переписчики прекрасно понимали, что им не удастся все идеально подсчитать. Само название переписей — «ценз» [23] (англ. census) — происходит от латинского термина censere, что означает «оценивать».
23
В Древнем Риме: перепись граждан с указанием имущества для определения их социально-политического, военного и податного положения.
Более трехсот лет назад у британского галантерейщика по имени Джон Граунт появилась инновационная идея. Чтобы вывести общую численность населения Лондона во время бубонной чумы, он не стал подсчитывать отдельных лиц, а воспользовался другим способом. Сегодня мы бы назвали его статистикой. Новый подход давал весьма приблизительные результаты, зато показывал, что на основании небольшой выборки можно экстраполировать полезные знания об общей картине. Особое значение имеет то, как именно это делалось. Граунт просто масштабировал результаты своей выборки.
Его система стала известной, хотя позже и выяснилось, что расчеты могли быть объективными только по счастливой случайности. Из поколения в поколение метод выборки оставался далеко не безупречным. Итак, для переписи и подобных целей, связанных с большими данными, основной подход заключался в грубой попытке подсчитать все и вся.
Поскольку переписи были сложными, дорогостоящими и трудоемкими, они проводились лишь в редких случаях. Древние римляне делали это каждые пять лет, притом что население исчислялось десятками тысяч. А в Конституции США закреплено правило проводить переписи каждые десять лет, поскольку население растущей страны насчитывает миллионы. Но к концу XIX века даже это оказалось проблематичным. Возможности Бюро переписи населения не успевали за ростом данных.
Перепись 1880 года длилась целых восемь лет. Ее данные успели устареть еще до публикации результатов. По подсчетам, на подведение итогов переписи 1890 года требовалось 13 лет — смехотворный срок, не говоря уже о нарушении Конституции. В то же время распределение налогов и представительство в Конгрессе зависели от численности населения, поэтому крайне важно было своевременно получать точные данные.
Проблема, с которой столкнулось Бюро переписи населения США, напоминает трудности современных ученых и бизнесменов: поток данных стал непосильным. Объем собираемой информации превысил все возможности инструментов, используемых для ее обработки. Срочно требовались новые методы. В 1880-х годах ситуация оказалась настолько удручающей, что Бюро переписи населения США заключило контракт
24
История переписей в США: US Census Bureau. The Hollerith Machine (онлайн-материал). URL:(последнее посещение — 25.07.2012).
С большим трудом ему удалось сократить время на сведение результатов с восьми лет до менее одного года. Это было удивительное достижение, которое положило начало автоматизированной обработке данных (и заложило основу будущей компании IBM). Однако такой метод получения и анализа больших объемов данных обходился все еще слишком дорого. Каждый житель Соединенных Штатов заполнял форму, из которой создавалась перфокарта для подсчета итогов. Трудно представить, как в таких условиях удалось бы провести перепись быстрее чем за десять лет. Но отставание определенно играло против нации, растущей не по дням, а по часам.
Основная трудность состояла в выборе: использовать все данные или только их часть. Безусловно, разумнее всего получать полный набор данных всех проводимых измерений. Но это не всегда выполнимо при огромных масштабах. И как выбрать образец? По мнению некоторых, лучший выход из ситуации — создавать целенаправленные выборки, которые представляли бы полную картину. Однако в 1934 году польский статистик Ежи Нейман ярко продемонстрировал, как такие выборки приводят к огромным ошибкам. Оказалось, разгадка в том, чтобы создавать выборку по принципу случайности. [25]
25
Вклад Неймана: Kruskal, William. Representative Sampling, IV: the History of the Concept in Statistics, 1895–1939 / William Kruskal and Frederick Mosteller // International Statistical Review. — 1980. — Vol. 48. — P. 169–195, 187–188. Знаменитая статья Неймана: Neyman, Jerzy. On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection // Journal of the Royal Statistical Society. — 1934. — Vol. 97, No. 4 . — P. 558–625.
Работа статистиков показала, что на повышение точности выборки больше всего влияет не увеличение ее размера, а элемент случайности. На самом деле, как ни странно, случайная выборка из 1100 ответов отдельных лиц на бинарный вопрос («да» или «нет») имеет более чем 97%-ную точность при проецировании на все население. Это работает в 19 из 20 случаев, независимо от общего размера выборки, будь то 100 000 или 100 000 000. [26] И трудно объяснить математически. Если вкратце, то с определенного момента роста данных предельное количество новой информации, получаемой из новых наблюдений, становится все меньше.
26
Выборки из 1100 результатов наблюдений достаточно. Пример см. в статье: Babbie, Earl. Practice of Social Research. — 12th ed., 2010. — P. 204–207.
То, что случайность компенсирует размер выборки, стало настоящим открытием, проложившим путь новому подходу к сбору информации. Данные можно собирать с помощью случайных выборок по низкой себестоимости, а затем экстраполировать их с высокой точностью на явление в целом. В результате правительства могли бы вести небольшие переписи с помощью случайных выборок ежегодно, а не раз в десятилетие (что они и делали). Бюро переписи населения США, например, ежегодно проводит более двухсот экономических и демографических исследований на выборочной основе, не считая переписи раз в десять лет для подсчета всего населения. Выборки решали проблему информационной перегрузки в более раннюю эпоху, когда собирать и анализировать данные было очень трудно.