Брайан Грин. Ткань космоса: Пространство, время и структура реальности
Шрифт:
Вторая, для физика верхний предел энтропии, которая может существовать в области пространства, является критической, едва ли не священной величиной. Чтобы понять, почему, представьте, что вы работаете на поведенческого психиатра и ваша работа заключается в поддержании детальной, момент за моментом записи взаимодействий внутри группы чрезвычайно активных маленьких детей. Каждое утро вы молитесь, чтобы дневная группа хорошо себя вела, поскольку чем больший бедлам создают дети, тем тяжелее ваша работа. Причина интуитивно понятна, но стоит высказать ее явно: чем более разупорядочены дети, тем больше вещей вы должны удержать во внимании. Вселенная представляется физику примерно с такой же проблемой. Фундаментальная физическая теория предназначена для описания всего, что происходит – или могло бы происходить, даже в принципе, – в данной области пространства. И, как и с детьми, чем больше беспорядка область может содержать, – даже в принципе, – тем больше вещей теория должна быть способна отслеживать. Таким образом, максимум энтропии, которую может содержать область, обеспечивает простой, но острый лакмусовый тест: физики ожидают, что в полном смысле слова фундаментальная теория есть та, которая в полной мере подходит к максимуму энтропии в любой данной пространственной области. Теория должна быть столь тесно настроена на природу, что ее максимальная способность отслеживать беспорядок должна быть в точности равна максимальному беспорядку, который область, возможно, может содержать, не больше и не меньше.
Дело в том, что если заключение на основе пластиковых контейнеров имеет неограниченную
Таким образом, результат Бекенштейна и Хокинга говорит нам, что теория, которая включает гравитацию, в некотором смысле проще, чем теория, которая не включает. Имеется меньше "степеней свободы" – меньше вещей, которые могут изменяться и потому давать вклад в беспорядок, – которые теория должна описывать. Это интересный результат сам по себе, но если мы проследуем по той же линии рассуждений на один шаг дальше, окажется, что он говорит нам нечто чрезвычайно странное. Если максимум энтропии в любой заданной области пространства пропорционален площади поверхности области, а не ее объему, то, вероятно, правильные, фундаментальные степени свободы – отличительные признаки, которые имеют потенциал давать вклад в этот беспорядок, – на самом деле располагаются на поверхности области, а не в ее объеме. Это значит, может быть, реальные физические процессы вселенной имеют место на тонкой удаленной поверхности, которая окружает нас, и все, что мы видим и ощущаем, есть просто проекция этих процессов. Это значит, может быть, вселенная является до некоторой степени похожей на голограмму.
Это необычная идея, но как мы сейчас обсудим, она имеет недавно полученную существенную поддержку.
Является ли вселенная голограммой?
Голограмма представляет собой кусок вытравленного пластика, который при освещении подходящим лазерным светом проецирует трехмерную картинку. [6] В начале 1990х датский Нобелевский лауреат Герард т"Хоофт и Леонард Сасскайнд, тот самый физик, который вместе с другими придумал теорию струн, предположили, что сама вселенная может действовать аналогичным голограмме способом. Они выдвинули изумительную идею, что приходящие и уходящие процессы, которые мы наблюдаем в трех измерениях повседневной жизни, могут сами быть голографическими проекциями физических процессов, имеющих место на удаленной двумерной поверхности. В их новом и своеобразно озвученном взгляде мы и все, что мы делаем или видим, может быть сродни голографическим картинкам. В то время как Платон воображал повседневные ощущения как обнаружение не более чем тени реальности, голографические принципы соглашаются, но переворачивают метафору на голову. Тени – вещи, которые расплющиваются и потому живут на поверхности с меньшим числом измерений, – реальны, тогда как то, что кажется более богато структурированной, более многомерной сущностью (мы, мир вокруг нас) является исчезающей проекцией теней.*
6. В 1971 родившийся в Венгрии физик Деннис Габор был удостоен Нобелевской премии за открытие нечто, названного голографией. Сначала имея целью усовершенствовать разрешающую силу электронного микроскопа, Габор работал в 1940е над поиском путей удержания большей части информации, закодированной в световых волнах, которые отражаются от объекта. Например, камера записывает интенсивность таких волн света; места, где интенсивность высока, дают более светлые области фотографии, а места, где интенсивность низка являются темными. Габор и многие другие обнаружили, однако, что интенсивность является только частью информации, которую несет световая волна. Мы видели это, например, на Рис. 4.3b: в то время как интерференционная картина подвергается влиянию интенсивности (амплитуды) света (волны с большей амплитудой дают всюду более яркую картину), сама картина возникает вследствие перекрывания волн, происходящих от каждой щели и достигших своего пика, своей впадины и различных промежуточных высот волны в различных местах вдоль экрана детектора. Последняя информация называется фазовой информацией: говорят, что две световых волны в данной точке находятся в фазе, если они усиливают друг друга (обе достигают пика или впадины в одно и то же время), и не в фазе, если они друг друга гасят (одна достигает пика тогда, когда вторая достигает впадины), и в более общем случае, они имеют промежуточные фазовые соотношения между указанными двумя экстремумами в точках, где они частично усиливаются или частично гасятся. Интерференционная картина, таким образом, записывает фазовую информацию интерферирующих световых волн.
Габор разработал способ записи на специально подготовленной пленке как интенсивности, так и фазовой информации света, отразившегося от объекта. Переводя на современный язык, его подход очень похож на экспериментальные установки на Рис. 7.1, за исключением того, что один из двух лазерных лучей отражается от искомого объекта на своем пути к экрану детектора. Если экран снабжен пленкой, содержащей подходящую фотографическую эмульсию, он запишет интерференционную картину – в форме мгновенных, вытравленных линий на поверхности пленки – между освобожденным лучом и лучом, который отразился от объекта. Интерференционная картина будет кодировать как интенсивность отраженного света, так и фазовые соотношения между двумя световыми лучами. Последствия прозрения Габора для науки были существенными, позволяя сделать множество усовершенствований в широком диапазоне измерительных технологий. Но для широкой публики самое заметное влияние оказало художественное и коммерческое применение голограмм.
Обычные фотографии выглядят плоскими, поскольку они записали только интенсивность света. Чтобы получть глубину, вам нужна фазовая информация. Причина в том, что когда световая волна путешествует, она колеблется от пика к впадине и снова к пику, так что фазовая информация – или, более точно, фазовые различия между лучами света, отразившимися от близких частей объекта, – кодирует различия в том, как далеко световой луч путешествовал. Например, если вы смотрите прямо на кота, его глаза чуть дальше удалены, чем его нос, и эта разница в глубине кодируется в разности фаз между лучами света, отражающимися от каждой части кошачьей морды. Посветив лазером через голограмму, мы оказываемся в состоянии воспользоваться фазовой информацией голографической записи, и следовательно, добавить глубины в образ. Мы все видели результаты: ошеломительные трехмерные проекции, генерируемые из двумерных кусочков пластика. Отметьте, однако, что ваши глаза не используют фазовую информацию, чтобы видеть глубину. Вместо этого ваши глаза используют параллакс: слабое отличие в углах, под которыми свет из данного источника добирается до вашего левого глаза и вашего правого глаза, чтобы донести информацию, которую ваш мозг декодирует в расстояние до точки источника. Именно поэтому, например, если вы потеряете зрение в одном глазе (или просто оставите его закрытым на время), вы потеряете восприятие глубины.
(*) "Если вы не склонны переписывать Платона, сценарий мира на бране дает версию голографии, в которой тени возвращаются на присущее им место. Представьте, что мы живем на 3-бране, которая окружает область с четырьмя пространственными измерениями (почти как двумерная кожица яблока
Еще раз, хотя это и фантастически странная идея, и одна из тех, чья роль в окончательном понимании пространства-времени далека от ясности, так называемый голографический принцип т"Хоофта и Сасскайнда хорошо мотивирован. Как мы обсуждали в последней секции, максимальная энтропия, которую может содержать область пространства, соотносится с площадью ее поверхности, но не с объемом ее внутренности. Естественно предположить тогда, что наиболее фундаментальные составляющие вселенной, ее самые базовые степени свободы – сущности, которые переносят энтропию вселенной почти как страницы Войны и Мира переносят ее энтропию, – могут располагаться на граничной поверхности, а не внутри вселенной. То, что мы ощущаем в "толще" вселенной – в объеме, как физики это часто называют, – может определяться тем, что имеет место на граничной поверхности, почти как то, что мы видим на голографической проекции, определяется информацией, закодированной на граничном кусочке пластика. Законы физики могут действовать как вселенский лазер, освещая реальные процессы космоса – процессы, имеющие место на тонкой, удаленной поверхности, – и генерируя голографическую иллюзию повседневной жизни.
Мы еще не понимаем, как этот голографический принцип может быть осуществлен в реальном мире. Одна проблема заключается в том, что в общепринятых описаниях вселенная представляется такой, что в ней вы или вечно уходите прочь, или, если нет, возвращаетесь назад, как на сфере или на экране видеоигры (как в Главе 8), а потому она может не иметь каких-либо краев или границ. Поэтому где будет находиться предполагаемая "граничная голографическая поверхность"? Более того, физические процессы определенно кажутся находящимися под нашим контролем, прямо здесь, в глубине внутренностей вселенной. Не кажется, что что-то на трудно локализуемой границе как-то вызывает последствия относительно того, что происходит здесь, в объеме. Предполагает ли голографический принцип, что то, что ощущается контролируемым и независимым, является иллюзорным? Или лучше думать о голографии как о четко сформулированной разновидности дуальности, в которой на основании вкуса – не физики – каждый может выбрать привычное описание, в котором фундаментальные законы действуют здесь в объеме (и которое выстраивается интуицией и ощущениями), или непривычное описание, в котором фундаментальные законы имеют место на некоторой разновидности границы вселенной, причем каждая точка зрения одинаково пригодна? Это важнейшие вопросы, которые остаются спорными.
Но в 1997, основываясь на более ранних достижениях многих струнных теоретиков, аргентинский физик Хуан Малдасена совершил прорыв, который впечатляюще продвинул вперед размышления на эти темы. Его открытие не имеет прямого отношения к вопросу о роли голографии в нашей реальной вселенной, но в иногда свойственной физике манере он нашел гипотетический контекст – гипотетическую вселенную, – в которой абстрактные мечтания о голографии могут быть сделаны с использованием математики как конкретными, так и точными. По техническим причинам Малдасена изучал гипотетическую вселенную с четырьмя большими пространственными измерениями и одним временным измерением, которая имеет постоянную отрицательную кривизну – более многомерная версия картофельного чипса, Рис. 8.6с. Стандартный математический анализ обнаружил, что это пятимерное пространство-время имеет границу, [7] которая, как и все границы, имеет на одно измерение меньше, чем пространство, которое она ограничивает: три пространственных измерения и одно временное. (Как всегда, многомерные пространства тяжело вообразить, так что, если вы хотите ментальную картину, подумайте о бидоне томатного супа – трехмерный жидкий суп есть аналог пятимерного пространства-времени, тогда как двумерная поверхность бидона есть аналог четырехмерного пространства-времени. После включения дополнительных скрученных измерений, как требуется теорией струн, Малдасена убедительно доказал, что физика, очевидцем которой является наблюдатель, живущий внутри этой вселенной (наблюдатель в "супе") может быть полностью описана в терминах физики, имеющей место на границе вселенной (физики на поверхности бидона).
7. Для склонного к математике читателя утверждение здесь таково, что лучи света или, в более общем случае, безмассовые частицы могут путешествовать из любой точки внутри пространства анти-деСиттера до пространственной бесконечности и назад за конечное время.
Хотя это не реалистично, эта работа обеспечила первый конкретный и поддающийся математической обработке пример, в котором голографический принцип был явно реализован. [8] Сделав так, он пролил больше света на понятие голографии в применении к целой вселенной. Например, в работе Малдасены описание объема и описание границы находятся на абсолютно одинаковом основании. Одно не является первичным, а другое вторичным. Почти в том же духе, как связь между пятью теориями струн, теории объема и границы являются переводами друг друга. Необычное свойство этого особого перевода, однако, в том, что объемная теория имеет больше измерений, чем эквивалентная теория, формулируемая на границе. Более того, хотя объемная теория включает гравитацию (поскольку Малдасена формулировал ее с использованием теории струн), расчеты показывают, что теория на границе не включает. Тем не менее, любой заданный вопрос или вычисление, сделанные в одной из теорий, могут быть переведены в эквивалентный вопрос или вычисление в другой. Хотя некто, не знакомый со словарем, может подумать, что соответствующие вопросы и вычисления не имеют абсолютно ничего общего друг с другом (например, поскольку теория на границе не включает гравитацию, вопросы, содержащие гравитацию в объемной теории, переводятся в совсем иначе звучащие, не содержащие гравитацию вопросы в теории на границе), некто, хорошо владеющий обоими языками, – эксперт в обеих теориях – распознает их взаимосвязь и осознает, что ответы на соответствующие вопросы и результаты соответствующих вычислений должны быть согласованы. На самом деле, каждый расчет, сделанный до сегодняшнего дня, а их было много, поддерживает это утверждение.
8. Для склонного к математике читателя: Малдасена работал в пространстве AdS5 x S4 с граничной теорией, возникающей из границы AdS5.
Детали всего этого требуют напряжения сил, чтобы полностью понять их, но не затеняют главного момента. Результат Малдасены ошеломителен. Он нашел конкретное, хотя и гипотетическое воплощение голографии в рамках теории струн. Он показал, что особая квантовая теория без гравитации является переводом – и не отличима от – другой квантовой теории, которая включает гравитацию, но формулируется с использованием еще одного пространственного измерения. Энергичные исследовательские программы сейчас выполняются, чтобы определить, как эти результаты могут быть применены к более реалистичной вселенной, нашей вселенной, но прогресс слаб, так как анализ обременен техническими трудностями. (Выбор Малдасены особого гипотетического примера был сделан вследствие того, что он относительно легко поддается математическому анализу; с более реалистичными примерами намного тяжелее работать). Тем не менее, мы теперь знаем, что теория струн, по меньшей мере в определенных контекстах, способна поддержать концепцию голографии. И, как и в случае с геометрическими переводами, описанными ранее, это обеспечивает еще один намек на то, что пространство-время не фундаментально. При переводе одной формулировки теории к другой, эквивалентной форме не только может измениться размер и форма пространства-времени, но так же и число пространственных измерений.