Чтение онлайн

на главную - закладки

Жанры

Царь всех болезней. Биография рака
Шрифт:

«Подчас кажется, что природа наделена весьма мрачным чувством юмора и иронией», — писал Раус в 1966 году. Самым ироничным стал последний урок, почерпнутый из изучения вируса саркомы Рауса. Почти шестьдесят лет этот вирус дразнил воображение биологов — в их печальный перечень вошел и Шпигельман, — увлекая их по ложному пути. Однако ложный путь в результате вывел к цели — от вирусного src к клеточному src и гипотезе, что внутренние протоонкогены повсеместно находятся в геноме нормальной клетки.

В стихотворении Льюиса Кэрролла, наконец-то поймав неуловимого Снарка, охотники обнаружили, что это не диковинный зверь, а один из их же товарищей, вместе с ними отправившийся в поход. Так же вышло и с

раком: раковые гены явились изнутри генома человека. Похоже, что древние греки были предельно точны в использовании термина «онкос». Оказывается, рак по сути своей изначально «загружен» в наш геном, ожидая активации, и мы обречены носить эту роковую ношу — «онкос» — в своих генах.

В 1989 году Вармус и Бишоп получили Нобелевскую премию за открытие клеточной природы ретровирусных онкогенов. На банкете в Стокгольме Вармус, вспомнив студенческие дни, прочел отрывок из эпической поэмы «Беовульф», в котором описывалась победа над драконом. «Мы не убили нашего врага, раковую клетку, образно говоря, не оторвали ему ни единой лапы, — сказал Вармус. — В нашем славном приключении мы яснее разглядели чудовище, по-новому описали его клыки и чешую — и поняли, что рак, подобно Гренделю, просто искаженная версия нас самих».

Ветер в деревьях

Острый, острый ветер, пробирающийся сквозь хаос мира, подобно острому идеальному резцу скульптора…

Д. Г. Лоуренс

Открытия, сделанные летом 1976 года, решительно преобразовали мир биологии рака, вновь поместив гены в центр внимания. Теория протоонкогенов Гарольда Вармуса и Майкла Бишопа стала первой связной и непротиворечивой теорией канцерогенеза. Она объясняла, каким образом и радиация, и сажа, и сигаретный дым, и прочие самые разнообразные и на первый взгляд никак не связанные между собой факторы могут приводить к раку — вызывая мутацию и тем самым активируя предшественники онкогенов в клетке. Эта теория придала смысл отмеченной Брюсом Эймсом взаимосвязи между канцерогенами и мутагенами: химические вещества, вызывающие мутации в ДНК, приводят к раку потому, что изменяют клеточные протоонкогены. Проясняла теория и то, почему один и тот же тип рака встречается, пусть и с разной частотой, и у курильщиков, и у некурящих: потому что в клетках и у тех, и у других имеются одинаковые протоонкогены — но у курильщиков рак возникает чаще за счет того, что содержащиеся в табачном дыме канцерогены увеличивают скорость мутаций.

Но как же выглядят гены рака у человека? Вирусологи обнаружили ген src сперва в вирусах, а потом и в клетках, но никто не сомневался в том, что по всему геному человека разбросано множество и других эндогенных протоонкогенов.

У генетиков есть два разных способа «увидеть» гены. Первый способ — структуральный: гены можно наблюдать в форме физической структуры, кусков ДНК, уложенных в хромосому, точь-в-точь как представляли себе Морган и Флемминг. Второй способ — функциональный: гены можно представлять себе, как Мендель, в наследовании тех или иных черт, передающихся от поколения к поколению. В период между 1970 и 1980 годами генетики, занимающиеся проблемами рака, начали рассматривать вызывающие рак гены в свете двух этих подходов. Каждое отдельное наблюдение усиливало понимание механизмов канцерогенеза и подводило науку все ближе к постижению ключевых молекулярных нарушений, связанных с раком у людей.

Сначала обнаружили структуру ракового гена, его анатомию. В 1973 году, когда Вармус и Бишоп только приступали к первым исследованиям гена src, чикагскому гематологу Джанет Роули удалось увидеть ген рака в осязаемой, физической форме. Роули изучала закономерности окрашивания хромосом в клетках, стремясь научиться выявлять нарушения хромосом в раковых клетках. Окрашивание хромосом, техника, которой она овладела в совершенстве, находится посередине между наукой и искусством — причем искусством, отставшим от жизни, словно традиционная живопись в эру цифрового изображения. В эпоху, когда

генетики углубились в мир РНК, опухолевых вирусов и онкогенов, Роули упорно тащила свою отрасль назад к корням — к окрашенным синеньким хромосомам Бовери и Флемминга. Более того, нагромождая анахронизм на анахронизм, она и предметом исследования выбрала хронический миелогенный лейкоз (ХМЛ), знаменитое беннеттовское «нагноение крови».

Исследования Роули основывались на предыдущих работах двух патологов из Филадельфии, также занимавшихся ХМЛ. В конце 1950-х годов Питер Ноуэлл и Дэвид Хангерфорд обнаружили, что в клетках этой разновидности лейкоза одна из хромосом всегда короче, чем ее аналог в нормальной клетке. В клетке человека содержится сорок шесть хромосом — парно, по двадцать три от каждого родителя. Ноуэлл обнаружил, что в клетках ХМЛ у одной из пары двадцать второй хромосомы всегда не хватает головки. Ноуэлл назвал это нарушение филадельфийской хромосомой, в честь места, где сделал это открытие. Однако ни Ноуэлл, ни Хангерфорд не могли понять, откуда берется это нарушение и куда девается недостающая часть хромосомы.

Шагая по стопам этого исследования, Роули стала отслеживать такую укороченную хромосому. Рассматривая тысячекратно увеличенные фотографии своих образцово окрашенных препаратов, — она раскладывала их на обеденном столе и склонялась над фотографиями, ища недостающий кусок знаменитой филадельфийской хромосомы, — Роули обнаружила закономерность. Пропавшая часть двадцать второй хромосомы прикреплялась в другое место: к концу девятой хромосомы. А кусок девятой хромосомы, напротив, крепился к двадцать второй. Подобное генетическое событие получило название «транслокация» — обмен участками между двумя хромосомами.

Роули обследовала все новых и новых пациентов, больных ХМЛ, и неизменно обнаруживала у них все ту же транслокацию. О том, что раковые клетки изобилуют хромосомными патологиями, было известно еще со времен фон Ганземана и Бовери. Данные Роули позволяли сделать гораздо более глубокие выводы. Рак — не беспорядочный хромосомный хаос, а упорядоченный хромосомный хаос: определенным разновидностям рака присущи специфические мутации, одинаковые во всех раковых клетках.

Хромосомные транслокации способны создавать новые гены, называемые химерами, за счет слияния двух генов, прежде локализованных в разных хромосомах, — скажем, «голова» девятой хромосомы соединяется с «хвостом» тринадцатой. Роули предположила, что транслокация, характерная для ХМЛ, как раз и приводит к образованию химерного гена. Роули не знала, какие именно функции выполняет этот новый химерный уродец, но продемонстрировала, что в раковых клетках человека могут существовать уникальные генетические нарушения, проявляющиеся в виде деформации структуры хромосом. Впоследствии было выявлено, что филадельфийская транслокация приводит к образованию онкогена.

В начале 1970-х годов Альфред Кнудсон, генетик из Калифорнийского технологического института, разработал совершенно иной метод выявления гена, вызывающего рак человека.

Роули визуализовала гены, вызывающие рак, изучая физическую структуру хромосом раковой клетки. Кнудсон же сосредоточился на функциях гена. Гены — единицы наследственности: они переносят те или иные свойства — признаки — от поколения к поколению. Кнудсон рассудил так: если гены вызывают рак, то можно выявить закономерности в наследовании рака, точно так же как Мендель пришел к самой идее существования генов, изучая наследование оттенка цветов и высоты гороха.

В 1969 году Кнудсон перешел в техасский Онкологический центр Монро Данауэйя Андерсена, где Фрейрих основал преуспевающий клинический центр, посвященный раку у детей. Кнудсону требовался «образцовый» рак — передающаяся по наследству злокачественность, закономерности наследования которой помогли бы выявить, как работают гены, вызывающие рак. Самым естественным выбором в такой ситуации была ретинобластома — редкая и диковинная разновидность рака глаза. Еще де Гувеа в Бразилии описал поразительное свойство этого рака проявляться в одной и той же семье на протяжении нескольких поколений.

Поделиться:
Популярные книги

Гоголь. Соловьев. Достоевский

Мочульский Константин Васильевич
Научно-образовательная:
философия
литературоведение
5.00
рейтинг книги
Гоголь. Соловьев. Достоевский

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Стратегия обмана. Трилогия

Ванина Антонина
Фантастика:
боевая фантастика
5.00
рейтинг книги
Стратегия обмана. Трилогия

По дороге на Оюту

Лунёва Мария
Фантастика:
космическая фантастика
8.67
рейтинг книги
По дороге на Оюту

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Печать пожирателя 2

Соломенный Илья
2. Пожиратель
Фантастика:
городское фэнтези
попаданцы
аниме
сказочная фантастика
5.00
рейтинг книги
Печать пожирателя 2

Игра со Зверем

Алексина Алёна
Фантастика:
фэнтези
6.25
рейтинг книги
Игра со Зверем

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Попаданка 3

Ахминеева Нина
3. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 3

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Гоплит Системы

Poul ezh
5. Пехотинец Системы
Фантастика:
фэнтези
рпг
фантастика: прочее
5.00
рейтинг книги
Гоплит Системы

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х