Царь всех болезней. Биография рака
Шрифт:
Ретинобластома — крайне трагичный вариант рака, и не только потому, что не щадит детей. Она затрагивает один из самых важных для ребенка органов: глаз. Иногда болезнь диагностируется, когда ребенок замечает, что мир вокруг начинает тускнеть и размываться. Иногда этот рак обнаруживают совершенно случайно, по детским фотографиям: от вспышки глаз ребенка сверкает, как у кошки под фонарем, и становится видно таящуюся в глубине опухоль. Если недуг не лечить, то он распространяется дальше, затрагивая глазной нерв, а оттуда поднимается в мозг. Основными методами лечения является облучение опухоли высокими дозами гамма-радиации или хирургическое удаление глаза.
Ретинобластома бывает
Эта наследственная закономерность интриговала Кнудсона. Он задался вопросом, не поможет ли математический анализ найти какие-либо отличия в развитии рака при спорадической и наследственной форме ретинобластомы. Для этого Кнудсон провел простейший эксперимент: разделил больных детей на две группы — со спорадической формой ретинобластомы и с наследственной — и стал изучать их истории болезни. По больничным записям он составил таблицы возраста, в котором проявилось заболевание, а потом на основании этих таблиц построил график. Оказалось, что рак в этих двух группах развивался с разной скоростью. При наследственной ретинобластоме наступление болезни шло стремительно, диагноз, как правило, ставился в возрасте от двух до шести месяцев. Спорадическая ретинобластома обычно проявлялась в возрасте от двух до четырех лет.
Почему одно и то же заболевание у разных детей развивается с разной скоростью? Позаимствовав приемы и простые уравнения у физики и теории вероятности, Кнудсон построил модель развития рака в двух группах и обнаружил, что все данные укладываются в несложную модель. У детей с наследственной ретинобластомой для развития рака требовалось только одно генетическое нарушение, а у детей со спорадической формой — два.
Отсюда возникал еще один озадачивающий вопрос: почему возникновение рака при наследственной форме болезни вызывается только одним генетическим нарушением, а при спорадической — двумя? Кнудсон предложил простой и красивый ответ. «Число два, — говорил он, — любимое число генетиков». В каждой нормальной клетке человека имеется по две копии каждой хромосомы, а следовательно — и по две копии каждого гена. В каждой нормальной клетке имеются две нормальные копии гена ретинобластомы — Rb. Кнудсон предположил, что для развития спорадической ретинобластомы обе копии гена Rb активируются путем мутации. Поэтому спорадическая ретинобластома развивается в более позднем возрасте, ведь для нее в одной клетке должны накопиться две одинаковые мутации.
Дети же с наследственной ретинобластомой рождаются с дефектной копией Rb. В их клетках одна копия гена дефектна с самого начала, поэтому требуется лишь одно генетическое изменение, чтобы клетка это почувствовала и начала делиться. Таким образом, дети с семейной ретинобластомой изначально имеют предрасположенность к болезни, и рак у них развивается быстрее, как и пронаблюдал Кнудсон в статистических таблицах. Кнудсон назвал это теорией двойного удара. Чтобы спровоцировать деление клетки, тем самым вызвав рак, для каждого гена требуется две мутации, два удара по генам.
Теория двойного удара Кнудсона прекрасно объясняла
Ответ кроется в функциях этих генов. Ген src активирует некую функцию клеточного деления. Мутация по этому гену, как показали Рей Эриксон и Хидэсабуро Ханафуса, создает клеточный белок, неспособный остановиться, — неукротимую и неутомимую киназу, провоцирующую постоянное деление клетки. А ген Кнудсона, Rb, осуществляет противоположное действие. Он подавляет клеточное деление. Лишь полное выведение такого гена из строя — двойной мутацией — приводит к бесконтрольному делению клетки. Таким образом, Rb является геном-супрессором рака, функциональной противоположностью src. Кнудсон назвал его антионкогеном.
«По всей видимости, — писал он, — в возникновении рака у детей ключевую роль играют два типа генов. Первый, онкогены, действует посредством повышенной, аномальной активности… Второй же класс, антионкогены (или супрессоры опухолей), в онкогенезе рецессивен: рак происходит лишь тогда, когда обе нормальные копии удалены или изменены. Некоторые люди обладают одной такой мутацией в зародышевой линии, а потому крайне подвержены раку: для его возникновения им требуется лишь одна соматическая мутация. Другие же дети, хотя и не имеют в зародышевой линии мутации, все равно заболевают раком в результате двух соматических мутаций».
Поразительно, что столь тонкая и изысканная гипотеза была сделана на основе одних статистических данных! Кнудсон не знал молекулярного воплощения вычисленных им антионкогенов, не смотрел на саму раковую клетку, пытаясь «увидеть» эти гены, не провел ни единого биологического эксперимента, охотясь за Rb. Подобно Менделю, он имел дело с генами лишь в статистическом смысле. По его собственным словам, он делал выводы об их существовании, «как делают вывод о ветре, глядя, как качаются деревья».
В конце 1970-х годов Вармус, Бишоп и Кнудсон начали описывать основные молекулярные нарушения раковых клеток, исследуя координированную работу онкогенов и антионкогенов. Гены рака, предположил Кнудсон, бывают двух разновидностей. «Положительные» гены, как, например, src, — это активированные версии нормальных клеточных генов. В нормальной клетке такие гены, получив соответствующий сигнал, способствуют клеточному делению. В мутантной же форме такие гены приходят в состояние постоянной гиперактивности, что влечет за собой бесконтрольное клеточное деление. Активированный протоонкоген, пользуясь сравнением Бишопа, подобен заевшей педали газа в машине. Клетка с такой заевшей педалью во весь опор несется по пути деления, не в силах прекратить митозы.
«Отрицательные» же гены, такие как Rb, напротив, подавляют клеточное деление. В нормальных клетках эти антионкогены, или гены-супрессоры опухолей, обеспечивают тормоза размножения, выключая деление, если клетка не получает нужного сигнала извне. В раковых клетках эти тормоза выведены из строя мутациями. Опять же используя сравнение Бишопа: если у клетки нет тормозов, она не реагирует на стоп-сигналы. Такая клетка тоже бесконтрольно делится, игнорируя сигналы прекратить деление.