Цель: Процесс непрерывного совершенствования
Шрифт:
Ребята снова кивают.
— Как вы думаете, сколько спичек мы можем провести через всю цепочку за один круг? — спрашиваю я.
На их лицах отражается растерянность.
— Ну, если минимально может выпасть одно очко, а максимально шесть, какое будет среднее значение?
— Три, — отвечает Энди.
— Нет, не три, — говорю я. — Средняя точка между единицей и шестеркой вовсе не три.
Я пишу на листе бумаги шесть цифр.
— Вот, смотрите, — говорю я и показываю им следующее:
1 2 3 4 5 6
Затем
— Так сколько спичек каждый из вас в среднем передвинет за один ход после того, как мы пройдем много кругов?
— Три с половиной за ход, — говорит Энди.
— Сколько это будет в сумме за десять кругов?
— Тридцать пять, — отвечает Чак.
— А за двадцать?
— Семьдесят, — говорит Бен.
— Хорошо. А теперь давайте посмотрим, как это у нас получится, — говорю я.
Тут я слышу протяжный вздох на дальнем конце стола. Это Ивен.
— Можно я не буду играть, мистер Рого? — спрашивает он.
— Почему?
— Потому, что я думаю, это очень скучная игра, — отвечает он.
— Да, — вторит ему Чак. — Просто перекладывай спички. Какой интерес?
— Я бы лучше узлы поучился вязать, — произносит Ивен.
— Вот что я вам скажу, — говорю я. — Чтобы игра стала интереснее, давайте введем награду. У каждого из вас норма — в среднем 3,5 спички за ход. Тот, кто ее перевыполнит, то есть получит среднее значение больше 3,5 очка, освобождается сегодня от мытья посуды: ее будут мыть те, у кого получится меньше 3,5.
— Хорошо! — соглашается Ивен.
— Здорово! — восклицает Дейв.
Теперь ребята заинтересовались и практикуются в метании кубика. А я тем временем рисую на листе бумаги таблицу, в которой буду фиксировать отклонения каждого хода от среднего значения. Все начинают с нуля. Если на кубике выпадут значения 4, 5 или 6, я запишу в выигрыш соответственно 0,5; 1,5 или 2,5. А если выпадет 1, 2 или 3, это будет проигрыш: -2,5; -1,5 или -0,5 очка. Отклонения, разумеется, должны накапливаться. То есть если у кого-то есть выигрыш 2,5 очка, отсчет на следующем ходу будет вестись уже от этих 2,5 очка, а не от нуля. Так, во всяком случае, было бы на заводе.
— Ну что, готовы? — спрашиваю я.
— Готовы.
Я передаю кубик Энди. Он выбрасывает два очка, после чего берет из коробка две спички и кладет их в тарелку Бена. Энди недобирает до нормы 1,5 очка, и я отмечаю это в таблице.
Следующим бросает кость Бен и получает четыре очка.
— Эй, Энди, — говорит он, — мне еще две спички нужно.
— Нет, нет, нет, — вмешиваюсь я. — Так не играют. Ты можешь переложить только те спички, которые у тебя есть в тарелке.
— Но у меня только две, — говорит Бен.
— Значит, две и передавай.
— Вот еще, — бурчит Бен.
Он передает две спички Чаку,
Чак бросает следующим. У него получается пять. Но опять же, спичек, которые можно переложить, только две.
— Слушайте, это нечестно! — восклицает Чак.
— Все честно, — говорю я. — Суть игры — передвигать спички. Если бы и у Энди, и у Бена выпало 5 очков, ты сейчас мог бы переместить 5 спичек. Но у них выпало меньше. Поэтому и тебе меньше достается.
Чак бросает презрительный взгляд на Энди.
— В следующий раз бросай побольше, — говорит он.
— А что я могу сделать? — защищается Энди.
— Не волнуйтесь, — с уверенностью успокаивает их Бен. — Нагоним.
Чак передает две несчастные спички Дейву, и я записываю ему отклонение -1,5, как и остальным. Мы все смотрим на Дейва. Он выбрасывает только одно очко. Значит, Ивену он может передать лишь одну спичку. Одно очко выпадает и у Ивена. Он берет единственную спичку со своей тарелки и кладет на край стола. Дейву и Ивену я записываю отклонение -2,5.
— Так, хорошо. Посмотрим, насколько лучше у нас получится в следующий раз, — говорю я.
Энди трясет кубик в руке, кажется, целую вечность. Все кричат, чтобы бросал, наконец. Кость катится по столу. Мы все напряженно смотрим. Шесть очков.
— Отлично!
— Так держать, Энди!
Он достает из коробка шесть спичек и кладет их в тарелку Бена. Я фиксирую прибавку +2,5, что в сумме с предыдущим результатом составляет +1.
Бен бросает кость и тоже получает шесть очков. Радости еще больше. Все шесть спичек он передает Чаку. Общий счет у него такой же, как у Энди.
Но вот Чак выбрасывает лишь три очка. После того как он передает три спички Дейву, у него в тарелке остается еще три спички. И я записываю ему проигрыш -0,5.
Теперь бросает кость Дейв. У него выпадает опять шесть очков. Но передать он может лишь четыре спички — три только что полученные от Чака и одну оставшуюся с предыдущего круга. Итак, Ивен получает четыре спички, а Дейв +0,5 очка.
У Ивена выпадает тройка. Таким образом, одинокая спичка в конце стола пополняется еще тремя. У Ивена в тарелке остается одна спичка. Я снимаю с него 0,5 очка.
По окончании двух раундов таблица розыгрыша выглядит так:
Мы продолжаем играть. Выбрасываем кубик и передаем его из рук в руки. Спички извлекаются из коробка и передаются из тарелки в тарелку. Суммарные очки Энди — а как же иначе? — очень близки к среднестатистическому значению. Ему удается держаться в районе норматива, даже несколько выше. На другом конце стола совсем другая картина.
— Эй, давайте спички.
— Да у меня не хватает.